《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于PSO優化小波變換的測井信號去噪研究
基于PSO優化小波變換的測井信號去噪研究
2022年電子技術應用第11期
魏振華1,2,3,胥越峰2,劉志鋒1,2,3,舒志浩2
1.核技術應用教育部工程研究中心,江西 南昌330013;2.東華理工大學 信息工程學院,江西 南昌330013; 3.江西省放射性地學大數據技術工程實驗室,江西 南昌330013
摘要: 小波變換被廣大科研工作者用于測井信號去噪研究上,而小波參數的選取直接影響最后的去噪效果,所以需要設計獲取測井信號最佳小波變換參數的算法。為應對測井信號處理中多種多樣的情況,創新性地提出用粒子群算法來改進小波變換參數的選取,并應用隨機慣性權重策略改變粒子群算法權重參數,提升粒子群算法收斂速度,增強搜索尋優能力,引入自然選擇機制以增加種群多樣性,獲得對應測井數據的最佳小波變換參數,將最佳小波變換參數應用到閾值法小波變換去噪中,有效分離了有用信號和無用噪聲。該算法有效地提高了測井信號的信噪比,降低了均方根差,實現了對測井信號中噪聲的有效去除。
中圖分類號: TP301.6
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.223028
中文引用格式: 魏振華,胥越峰,劉志鋒,等. 基于PSO優化小波變換的測井信號去噪研究[J].電子技術應用,2022,48(11):115-120.
英文引用格式: Wei Zhenhua,Xu Yuefeng,Liu Zhifeng,et al. Research on log signal denoising based on PSO optimized wavelet transform[J]. Application of Electronic Technique,2022,48(11):115-120.
Research on log signal denoising based on PSO optimized wavelet transform
Wei Zhenhua1,2,3,Xu Yuefeng2,Liu Zhifeng1,2,3,Shu Zhihao2
1.Engineering Research Center of Nuclear Technology Application(East China University of Technology), Ministry of Education,Nanchang 330013,China; 2.School of Information Engineering,East China University of Technology,Nanchang 330013,China; 3.Jiangxi Provincial Engineering Laboratory of Radiology Big Data Technology,Nanchang 330013,China
Abstract: Wavelet transform is widely used in the research of logging signal denoising, and the selection of wavelet parameters directly affects the final denoising effect, so it is necessary to design an algorithm to obtain the best wavelet transform parameters of logging signal. In this paper, the random inertia weight strategy is innovatively proposed to change the weight parameters of particle swarm optimization algorithm, which improves the convergence speed of particle swarm optimization algorithm, enhances the ability of searching for optimization, and obtains the optimal wavelet transform parameters. The optimal wavelet transform parameters are applied to the wavelet denoising of soft threshold method, which can effectively separate the useful signal and useless noise. This algorithm can effectively improve the signal-to-noise ratio of logging signal, reduce the root mean square difference, and realize the effective removal of noise in logging signal.
Key words : logging signal denoising;particle swarm optimization;the wavelet parameters;wavelet transform denoising;soft threshold method

0 引言

    在測井信號的采集、處理、轉發過程中,由于環境、儀器、人為等因素的干擾測井信號中總會存在噪聲,如果不經處理直接使用這些帶噪信號會對礦產勘探產生誤差,更有嚴重者甚至會造成重大的經濟損失。因此,在信號處理的過程中去除測井信號的噪聲就顯示出了必要性。測井信號去噪有很多方法,小波變換突破了以傅里葉為代表的傳統方法的顯著缺陷,在時頻域上都有著亮眼的表現,是去噪方法的主要技術之一。

    主流的研究表明小波變換的參數設置會直接影響最后的濾波去噪效果,如李維松等統合硬、軟以及Garrote閾值去噪的優點,構造出一個新的改進閾值函數,在突變性及平滑性信號方面取得了更優的降噪成果[1];朱榮亮等為更好地濾除噪聲,提出一種新閾值函數,通過仿真確定最佳小波函數類型和分解層數[2];謝政宇等根據均方根誤差和平滑度的變化特性構建了一種復合評價指標,通過評價指標來優選小波參數[3]。但是在對測井信號的處理中,因測井數據的龐大與多樣性,單獨改進閾值函數等對不同地區、不同井、不同井次、不同測井曲線的去噪效果不夠好,所以在參考了解文獻[4]-[6]中體現出粒子群算法尋找最優點的優勢以及測井信號處理的實際需求后,采取群智能算法中的粒子群算法(Particle Swarm Optimization,PSO)來獲取不同目標下的最佳小波變換參數,并對粒子群算法做一定的優化。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005016




作者信息:

魏振華1,2,3,胥越峰2,劉志鋒1,2,3,舒志浩2

(1.核技術應用教育部工程研究中心,江西 南昌330013;2.東華理工大學 信息工程學院,江西 南昌330013;

3.江西省放射性地學大數據技術工程實驗室,江西 南昌330013)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 99久久亚洲综合精品网站| 日本边添边摸边做边爱的视频| 成年人性生活片| 国产成人va亚洲电影| 丰满熟女高潮毛茸茸欧洲| 粗大的内捧猛烈进出小视频| 国产美女一级做a爱视频| 五月综合色婷婷在线观看| 耻辱の女潜入搜查官正在播放| 天天综合天天综合| 亚洲免费观看视频| 色窝窝无码一区二区三区成人网站| 宝贝乖女好紧好深好爽老师| 亚洲欧美日韩一区在线观看| 黄色福利在线观看| 小莹的性荡生活37章| 亚洲欧洲综合在线| 青草青草视频2免费观看| 好吊色青青青国产在线观看| 亚洲人成日本在线观看| 色播亚洲视频在线观看| 国产精品无码专区av在线播放| 久久久香蕉视频| 白嫩少妇喷水正在播放| 国产精品福利自产拍在线观看| 久久久无码精品亚洲日韩蜜桃| 欧美日韩视频在线观看高清免费网站 | 小四郎在线观看| 久久国产精品萌白酱免费| 粉色视频下载观看视频| 国产精品欧美激情在线播放| 一本精品99久久精品77| 欧美xxxx性猛交bbbb| 国产剧情精品在线| japanese日本护士xxxx18一19 | 国产精品久久久久9999| 中文字幕亚洲不卡在线亚瑟| 欧美精品亚洲精品日韩专区| 国产一区二区三精品久久久无广告| 91精品久久久久久久久久| 日本熟妇色熟妇在线视频播放 |