《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 9期
張瑾,姜浩,金秀章
(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)
摘要: 針對(duì)燃煤機(jī)組SCR脫硝系統(tǒng)出口NOx濃度存在測(cè)量滯后以及吹掃時(shí)數(shù)據(jù)失真等問(wèn)題,提出了一種基于特征提取和粒子群算法(PSO)優(yōu)化極限學(xué)習(xí)機(jī)(ELM)超參數(shù)的燃煤機(jī)組SCR脫硝系統(tǒng)模型。利用互信息(MI)進(jìn)行時(shí)間遲延補(bǔ)償,采用最大相關(guān)最小冗余(mRMR)方法篩選輔助變量,通過(guò)PSO優(yōu)化算法確定ELM最優(yōu)超參數(shù)并建立預(yù)測(cè)模型,最后進(jìn)行對(duì)比驗(yàn)證。仿真結(jié)果表明:采用本文方法所建立的PSO-ELM預(yù)測(cè)模型的均方誤差和相關(guān)系數(shù)分別為0.931 4 mg/m3和0.978 6,預(yù)測(cè)精度高,能夠?yàn)槊撓跸到y(tǒng)出口NOx的現(xiàn)場(chǎng)優(yōu)化控制提供技術(shù)支持。
中圖分類號(hào):X773
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.013
引用格式:張瑾,姜浩,金秀章.基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(9):88-95.
PSO-ELM modeling of SCR denitrification system of coal-fired units based on mutual information variable selection
Zhang Jin,Jiang Hao ,Jin Xiuzhang
( School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
Abstract: Aiming at the problems of NOx concentration at the outlet of selective catalytic reduction (SCR) denitration system of coal-fired units, such as measurement lag and data distortion during purging, a SCR denitration system model of coal-fired units based on feature extraction and particle swarm optimization (PSO) to optimize extreme learning machine (ELM) hyperparameters is proposed in this paper. Mutual information (MI) was used to compensate the time delay, maximum correlation minimum redundancy (mRMR) was used to screen the auxiliary variables, and the optimal ELM hyperparameters were determined by PSO optimization algorithm and the prediction model was established. Finally, the comparison and verification were carried out. The simulation results show that the mean square error and correlation coefficient of the PSO-ELM prediction model established by the method in this paper are 0.931 4 mg/m3 and 0.978 6 respectively, with high prediction accuracy, which can provide technical support for the on-site optimization control of NOx at the exit of the denitrification system.
Key words : mutual information;PSO algorithm;SCR-DeNOx system;extreme learning

0     引言

燃煤機(jī)組產(chǎn)生的氮氧化物(NOx)是大氣污染的首要排放物之一,在空氣質(zhì)量方面影響較為嚴(yán)重[1]。煙氣排放連續(xù)檢測(cè)系統(tǒng)(Continuous Emission Monitoring Systems,CEMS)對(duì)煙氣取樣管路要按時(shí)反向吹掃,以避免積灰堵塞,從而會(huì)導(dǎo)致NOx測(cè)量結(jié)果存在間斷性失真,同時(shí),由于煙氣取樣管路長(zhǎng)度一般為40~60 m,造成測(cè)量結(jié)果出現(xiàn)時(shí)滯現(xiàn)象,控制系統(tǒng)的控制難度也因此得到提升。因此,建立脫硝系統(tǒng)預(yù)測(cè)模型,對(duì)于燃煤機(jī)組的優(yōu)化運(yùn)行,噴氨量的控制以及污染物的監(jiān)測(cè)管理都具有重要意義[2]。

隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,許多建模方法被應(yīng)用到脫硝系統(tǒng)當(dāng)中。楊文玉等人[3]利用RBF神經(jīng)網(wǎng)絡(luò)建立了脫硝系統(tǒng)出口NOx的預(yù)測(cè)模型,該模型在處理時(shí)序預(yù)測(cè)問(wèn)題時(shí)并沒(méi)有明顯優(yōu)勢(shì)。張淑清等人[4]利用ELM神經(jīng)網(wǎng)絡(luò)建立了電網(wǎng)負(fù)荷的預(yù)測(cè)模型,并利用飛蛾優(yōu)化算法對(duì)模型參數(shù)進(jìn)行優(yōu)化,該文所用訓(xùn)練數(shù)據(jù)過(guò)少,容易導(dǎo)致模型過(guò)擬合。劉延泉等人[5]將互信息與LSSVM方法結(jié)合,對(duì)脫硝系統(tǒng)入口NOx濃度進(jìn)行了預(yù)測(cè),但模型未考慮輸入變量的對(duì)模型的影響。

除了建模方法,特征選擇也會(huì)影響模型的預(yù)測(cè)能力。特征選擇常見(jiàn)的方法有過(guò)濾式(Filter)、封裝式(Wrapper)和嵌入式(Embedded)三種。輸入變量的直接選擇決定了模型的結(jié)構(gòu)與輸出,輸入變量的選擇通常對(duì)工業(yè)機(jī)理進(jìn)行分析,從待選變量進(jìn)行篩選獲取[6-7]。金秀章等人[8]利用mRMR算法篩選出符合模型的輸入變量,建立了出口SO2質(zhì)量濃度預(yù)測(cè)模型,但正則化仍不能計(jì)算出隱層節(jié)點(diǎn)的具體數(shù)量。趙文杰等人[9]利用互信息與優(yōu)化算法結(jié)合確定系統(tǒng)最優(yōu)的輸入變量集合,將互信息特征提取方法應(yīng)用到高維系統(tǒng)中,建立了脫硝系統(tǒng)的預(yù)測(cè)模型,但該方法計(jì)算量大,耗時(shí)較長(zhǎng),實(shí)施起來(lái)較為困難。錢虹等人[10]采用隨機(jī)森林算法進(jìn)行變量選擇,并對(duì)SCR脫硝系統(tǒng)出口NOx質(zhì)量濃度進(jìn)行了預(yù)測(cè),但模型未解決煙氣采樣管道長(zhǎng)度較長(zhǎng)而導(dǎo)致的時(shí)滯問(wèn)題。


本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.xxav2194.com/resource/share/2000005666




作者信息:

張瑾,姜浩,金秀章

(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 精品一区二区久久久久久久网站 | 国产麻豆天美果冻无码视频| 久久久久无码专区亚洲AV| 污网站视频在线观看| 四虎国产永久免费久久| 丰满人妻一区二区三区视频53 | 进击的巨人第一季动漫樱花动漫| 国内大量揄拍人妻精品視頻| 中国胖女人一级毛片aaaaa| 星空无限传媒xk8046| 噜噜噜在线观看播放视频| 男女一进一出无遮挡黄| 女人被男人躁的女爽免费视频| 久久亚洲精品中文字幕无码| 欧美性最猛xxxx在线观看视频 | 99久久精品九九亚洲精品| 成年免费a级毛片免费看无码| 亚洲AV日韩AV高潮无码专区| 正在播放年轻大学生情侣| 公的大龟慢慢挺进我的体内视频 | 九九热精品国产| 欧美精品videossex欧美性| 公与秀婷厨房猛烈进出视频| 草莓视频app在线播放| 国产换爱交换乱理伦片| 8888奇米影视笫四色88me| 天天躁夜夜躁狂狂躁综合| 中文字幕久精品免费视频| 日本高清免费看| 亚洲av中文无码乱人伦| 欧美激情综合亚洲五月蜜桃| 国产在线观看一区二区三区| 55夜色66夜色国产精品视频| 日本黄色免费观看| 亚洲日韩中文字幕一区| 男人的肌肌捅女人的肌肌| 四虎国产精品成人| 青青草成人影视| 国产激情视频在线观看首页| 91精品国产91久久久久| 女人战争之肮脏的交易|