《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于深度級(jí)聯(lián)網(wǎng)絡(luò)的入侵檢測(cè)算法研究
基于深度級(jí)聯(lián)網(wǎng)絡(luò)的入侵檢測(cè)算法研究
2021年電子技術(shù)應(yīng)用第11期
郭衛(wèi)霞,張 偉,楊國玉
中國大唐集團(tuán)科學(xué)技術(shù)研究院,北京100043
摘要: 針對(duì)海量多源異構(gòu)的網(wǎng)絡(luò)流量數(shù)據(jù)難以用傳統(tǒng)的機(jī)器學(xué)習(xí)算法有效提取特征,分類效果差的問題,提出一種基于深度級(jí)聯(lián)網(wǎng)絡(luò)的入侵檢測(cè)算法,利用神經(jīng)網(wǎng)絡(luò)自動(dòng)學(xué)習(xí)特征的能力,將卷積神經(jīng)網(wǎng)絡(luò)和長短期記憶網(wǎng)絡(luò)結(jié)合起來,同時(shí)提取流量數(shù)據(jù)的空間特征和時(shí)序特征,并采用softmax進(jìn)行分類,提高模型的檢測(cè)性能和泛化能力。最后將該算法在KDDCUP99數(shù)據(jù)集上進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果表明,該入侵檢測(cè)模型相較于SVM、DBN等算法有更高的檢測(cè)率,準(zhǔn)確率可達(dá)95.39%,誤報(bào)率僅0.96%,有效提高了入侵檢測(cè)分類性能。
中圖分類號(hào): TN03;TP393
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.211394
中文引用格式: 郭衛(wèi)霞,張偉,楊國玉. 基于深度級(jí)聯(lián)網(wǎng)絡(luò)的入侵檢測(cè)算法研究[J].電子技術(shù)應(yīng)用,2021,47(11):68-72.
英文引用格式: Guo Weixia,Zhang Wei,Yang Guoyu. Research on intrusion detection algorithm based on deep cascade network[J]. Application of Electronic Technique,2021,47(11):68-72.
Research on intrusion detection algorithm based on deep cascade network
Guo Weixia,Zhang Wei,Yang Guoyu
China Datang Corporation Science and Technology Research Institute,Beijing 100043,China
Abstract: Aiming at the problem that traditional machine learning algorithms are difficult to effectively extract features from massive multi-source heterogeneous network traffic data, and the classification effect is poor, an intrusion detection algorithm based on deep cascaded network is proposed, which uses the ability of neural network to automatically learn features. Convolutional neural network(CNN) is combined with long short-term memory network(LSTM) to extract the spatial and temporal characteristics of traffic data at the same time. And softmax is used for classification to improve the detection performance and generalization ability of the model. Finally, the algorithm is verified on the KDDCUP99 data set. The experimental results show that the intrusion detection model has a higher detection rate than SVM, DBN and other algorithms, with an accuracy rate of 95.39% and a false alarm rate of only 0.96%, which effectively improves intrusion detection classification performance.
Key words : intrusion detection;feature extraction;convolutional neural network(CNN);long short-term memory(LSTM)

0 引言

    信息技術(shù)的高速發(fā)展極大地豐富和便利了人們的學(xué)習(xí)、生活和工作,但與此同時(shí)網(wǎng)絡(luò)攻擊導(dǎo)致的網(wǎng)絡(luò)異常中斷、用戶個(gè)人信息泄露等事件頻頻發(fā)生,互聯(lián)網(wǎng)所面臨的各種安全威脅變得日益嚴(yán)重,因此維護(hù)網(wǎng)絡(luò)安全變得至關(guān)重要。網(wǎng)絡(luò)入侵檢測(cè)作為一種動(dòng)態(tài)有效的主動(dòng)檢測(cè)技術(shù),能夠通過分析網(wǎng)絡(luò)流量數(shù)據(jù)識(shí)別具有攻擊行為的信息,在網(wǎng)絡(luò)受到攻擊之前進(jìn)行及時(shí)的攔截和響應(yīng),目前已經(jīng)成為信息安全領(lǐng)域研究的重要內(nèi)容之一。

    入侵檢測(cè)技術(shù)最早于1980年由Anderson[1]提出。1987年Denning[2]采納了Anderson技術(shù)報(bào)告中的檢測(cè)建議,提出了入侵檢測(cè)專家系統(tǒng)(Intrusion Detection Expert System,IDES),后來大量的研究人員提出了各種入侵檢測(cè)算法來提升檢測(cè)效果。近些年,機(jī)器學(xué)習(xí)算法被廣泛應(yīng)用在各種入侵檢測(cè)技術(shù)中,文獻(xiàn)[3]將支持向量機(jī)(Support Vector Machine,SVM)應(yīng)用于網(wǎng)絡(luò)異常流量檢測(cè)中。文獻(xiàn)[4]利用K近鄰(K-Nearest Neighbor,KNN)算法進(jìn)行網(wǎng)絡(luò)入侵檢測(cè),提高了分類效果。文獻(xiàn)[5]基于并行K-means聚類算法對(duì)異常流量數(shù)據(jù)進(jìn)行分簇,降低分類誤差。上述算法在一定程度上提高了入侵檢測(cè)精度,但是基于機(jī)器學(xué)習(xí)的入侵檢測(cè)算法依賴于人工提取的數(shù)據(jù)特征,需要人為進(jìn)行大量復(fù)雜的特征工程,并且對(duì)于海量多源異構(gòu)的網(wǎng)絡(luò)入侵?jǐn)?shù)據(jù)沒有很好的魯棒性。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.xxav2194.com/resource/share/2000003829




作者信息:

郭衛(wèi)霞,張  偉,楊國玉

(中國大唐集團(tuán)科學(xué)技術(shù)研究院,北京100043)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 免费a级毛片高清在钱| 国产精品你懂得| 久久亚洲欧美国产精品| 爱情岛永久入口线路首页| 国产亚洲色婷婷久久99精品| 7m精品福利视频导航| 工囗番漫画全彩无遮拦老师| 乱人伦人妻中文字幕在线入口| 特级西西人体444WWw高清大胆| 国产一精品一av一免费爽爽| 2020年亚洲天天爽天天噜| 天堂影院www陈冠希张柏芝| 中文无码字幕中文有码字幕| 欧美一日本频道一区二区三区| 伊人色综合久久天天| 色视频www在线播放国产人成| 国产精品久久女同磨豆腐| re99热久久这里只有精品| 日日碰狠狠添天天爽不卡| 亚洲专区欧美专区| 波多野结衣电车痴汉| 又大又湿又紧又爽a视频| 饭冈佳奈子gif福利动态图| 国产精品国产三级国产专不∫| ririai66在线观看视频| 成人综合婷婷国产精品久久蜜臀| 久久综合色视频| 欧美成人免费全部色播| 伊人色综合一区二区三区| 美腿丝袜中文字幕| 国产寡妇偷人在线观看视频| 2021国产精品久久| 够爽影院vip破解版| 丁香六月久久久| 日本三级2021最新理论在线观看| 亚洲av无码专区在线播放| 欧美精品亚洲精品日韩专区| 免费a级毛片无码| 美国式禁忌在线播放| 国产人妖XXXX做受视频| 免费专区丝袜脚调教视频|