《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類模型綜述*
基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類模型綜述*
電子技術(shù)應(yīng)用 2023年9月
郭慶梅1,于恒力2,王中訓1,劉寧波2
(1.煙臺大學 物理與電子信息學院,山東 煙臺 264005;2.海軍航空大學 信息融合研究所,山東 煙臺 264001)
摘要: 卷積神經(jīng)網(wǎng)絡(luò)在計算機視覺等領(lǐng)域占有一席之地,利用局部連接、權(quán)值共享以及池化操作等特性,有效地提取圖像的局部特征,降低網(wǎng)絡(luò)復雜度,具有更少的參數(shù)量和更好的魯棒性,因此,吸引了眾多研究者的關(guān)注,使分類模型朝著更輕、更快、更高效的方向迅速發(fā)展。按照卷積神經(jīng)網(wǎng)絡(luò)發(fā)展的時間線,介紹了常用的典型網(wǎng)絡(luò)模型,剖析了其創(chuàng)新點與優(yōu)缺點,并對其未來的發(fā)展方向進行了展望。
中圖分類號:TP183 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233909
中文引用格式: 郭慶梅,于恒力,王中訓,等. 基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類模型綜述[J]. 電子技術(shù)應(yīng)用,2023,49(9):31-38.
英文引用格式: Guo Qingmei,Yu Hengli,Wang Zhongxun,et al. Review of image classification models based on convolutional neural networks[J]. Application of Electronic Technique,2023,49(9):31-38.
Review of image classification models based on convolutional neural networks
Guo Qingmei1,Yu Hengli2,Wang Zhongxun1,Liu Ningbo2
(1.School of Physics and Electronic Information, Yantai University, Yantai 264005, China; 2.Information Fusion Institute, Naval Aviation University, Yantai 264001, China)
Abstract: Convolutional neural networks have established themselves as a prominent technique in computer vision and related fields. By leveraging features such as local connections, weight sharing, and pooling operations, these networks are able to effectively extract local features from images, reducing network complexity, and exhibiting fewer parameters and greater robustness. As a result, they have garnered significant attention from researchers and have led to the rapid development of classification models that are lighter, faster, and more efficient. This article presents a timeline of typical network models used in convolutional neural network development, analyzes their innovative points and advantages and disadvantages, and offers insights into their future development directions.
Key words : convolutional neural network;computer vision;feature extraction;classification model

0 引言

卷積神經(jīng)網(wǎng)絡(luò)[1]是一種深度學習模型,主要應(yīng)用于圖像和視頻等數(shù)據(jù)的識別與分類。2012年Alex Krizhevsky等人[2]在ImageNet大賽中使用CNN大幅度超越傳統(tǒng)方法,CNN一躍成為計算機視覺領(lǐng)域的熱門技術(shù)。其具有表征學習能力、泛化能力以及平移不變性,可以高效處理大規(guī)模圖像且能夠轉(zhuǎn)換成圖像結(jié)構(gòu)的數(shù)據(jù),解決了傳統(tǒng)方法需手動提取特征帶來的耗時、準確率低等問題,加之計算機性能有了很大的提升[3],使得CNN得到了質(zhì)的發(fā)展,因此在圖像分類、目標識別以及醫(yī)療診斷等領(lǐng)域被廣泛應(yīng)用[4],且取得了顯著的成就。


本文詳細內(nèi)容請下載:http://m.xxav2194.com/resource/share/2000005634




作者信息:

郭慶梅1,于恒力2,王中訓1,劉寧波2

(1.煙臺大學 物理與電子信息學院,山東 煙臺 264005;2.海軍航空大學 信息融合研究所,山東 煙臺 264001)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 国产欧美日韩视频免费61794| 成人免费毛片视频| 人人爽人人爽人人爽人人片av| 麻豆传播媒体免费版官网| 在线观看日韩视频| 丰满少妇人妻无码| 欧美一级在线看| 交换配乱吟粗大SNS84O| 色哟哟网站在线观看| 国产男女猛烈无遮挡免费视频| h在线免费视频| 日本a级作爱片金瓶双艳| 亚洲人和日本人jizz| 狠狠色噜噜狠狠狠狠98| 国产V亚洲V天堂无码久久久| 亚洲精品第一国产综合野| 夜夜爽免费888视频| 中文字幕丝袜诱惑| 日韩欧美在线综合| 亚洲国产精品网| 男人和女人做免费做爽爽视频| 国产乱码一区二区三区| 欧美日在线观看| 国产麻豆精品高清在线播放| 一本色道久久综合亚洲精品高清| 日本高清不卡在线观看| 亚洲免费一级片| 洗澡被王总干好舒服小说| 午夜三级A三级三点在线观看| 青青草原综合网| 国产欧美在线一区二区三区| 91精品欧美一区二区综合在线| 好紧好爽好大好深在快点视频| 丽玲老师高跟鞋调教小说| 日韩美女一级毛片| 亚洲人av高清无码| 欧美精品久久天天躁| 伊人久久大香线蕉av五月天| 综合图区亚洲欧美另类图片| 国产亚洲精久久久久久无码| 欧美性狂猛bbbbbxxxxx|