《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于卷積神經網絡的圖像分類模型綜述*
基于卷積神經網絡的圖像分類模型綜述*
電子技術應用 2023年9月
郭慶梅1,于恒力2,王中訓1,劉寧波2
(1.煙臺大學 物理與電子信息學院,山東 煙臺 264005;2.海軍航空大學 信息融合研究所,山東 煙臺 264001)
摘要: 卷積神經網絡在計算機視覺等領域占有一席之地,利用局部連接、權值共享以及池化操作等特性,有效地提取圖像的局部特征,降低網絡復雜度,具有更少的參數量和更好的魯棒性,因此,吸引了眾多研究者的關注,使分類模型朝著更輕、更快、更高效的方向迅速發展。按照卷積神經網絡發展的時間線,介紹了常用的典型網絡模型,剖析了其創新點與優缺點,并對其未來的發展方向進行了展望。
中圖分類號:TP183 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233909
中文引用格式: 郭慶梅,于恒力,王中訓,等. 基于卷積神經網絡的圖像分類模型綜述[J]. 電子技術應用,2023,49(9):31-38.
英文引用格式: Guo Qingmei,Yu Hengli,Wang Zhongxun,et al. Review of image classification models based on convolutional neural networks[J]. Application of Electronic Technique,2023,49(9):31-38.
Review of image classification models based on convolutional neural networks
Guo Qingmei1,Yu Hengli2,Wang Zhongxun1,Liu Ningbo2
(1.School of Physics and Electronic Information, Yantai University, Yantai 264005, China; 2.Information Fusion Institute, Naval Aviation University, Yantai 264001, China)
Abstract: Convolutional neural networks have established themselves as a prominent technique in computer vision and related fields. By leveraging features such as local connections, weight sharing, and pooling operations, these networks are able to effectively extract local features from images, reducing network complexity, and exhibiting fewer parameters and greater robustness. As a result, they have garnered significant attention from researchers and have led to the rapid development of classification models that are lighter, faster, and more efficient. This article presents a timeline of typical network models used in convolutional neural network development, analyzes their innovative points and advantages and disadvantages, and offers insights into their future development directions.
Key words : convolutional neural network;computer vision;feature extraction;classification model

0 引言

卷積神經網絡[1]是一種深度學習模型,主要應用于圖像和視頻等數據的識別與分類。2012年Alex Krizhevsky等人[2]在ImageNet大賽中使用CNN大幅度超越傳統方法,CNN一躍成為計算機視覺領域的熱門技術。其具有表征學習能力、泛化能力以及平移不變性,可以高效處理大規模圖像且能夠轉換成圖像結構的數據,解決了傳統方法需手動提取特征帶來的耗時、準確率低等問題,加之計算機性能有了很大的提升[3],使得CNN得到了質的發展,因此在圖像分類、目標識別以及醫療診斷等領域被廣泛應用[4],且取得了顯著的成就。


本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005634




作者信息:

郭慶梅1,于恒力2,王中訓1,劉寧波2

(1.煙臺大學 物理與電子信息學院,山東 煙臺 264005;2.海軍航空大學 信息融合研究所,山東 煙臺 264001)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 免费一区二区三区四区| 日日夜夜狠狠操| 古代np多夫h肉辣文| 在线视频国产网址你懂的在线视频| 新版天堂资源在线官网8| 亚洲国产精品sss在线观看AV| 经典三级在线播放线观看| 国产精品免费拍拍1000部| 一女被两男吃奶玩乳尖| 最近中文字幕更新8| 亚洲色中文字幕在线播放| 色88久久久久高潮综合影院| 国产电影入口麻豆| XXX2高清在线观看免费视频| 无人视频免费观看免费视频 | 477777开奖现场老玩家| 婷婷综合五月天| 久久国产热这里只有精品| 97人人添人澡人人爽超碰| 日本一卡精品视频免费| 亚洲国产精品综合久久网络| 粉嫩虎白女m3n8视频| 国产亚洲精久久久久久无码| 全黄大全大色全免费大片| 好大好湿好硬顶到了好爽视频 | 老司机精品久久| 国产成人免费a在线视频app| 91av免费观看| 天天操夜夜操天天操| 中文字幕一区二区三区精彩视频| 日韩欧美一区二区三区免费看| 亚洲成a人片在线不卡一二三区 | 久久亚洲国产精品五月天婷| 波多野结衣资源在线| 欧美aⅴ菲菲影视城视频| 人妻精品久久久久中文字幕一冢本| 老司机午夜精品视频播放| 国产在线19禁免费观看| 人人澡人人澡人人澡| 97视频精品全国在线观看| 成人免费无毒在线观看网站|