《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于深度學習的物聯網入侵檢測系統綜述
基于深度學習的物聯網入侵檢測系統綜述
網絡安全與數據治理
周品希,沈岳,李偉
湖南農業大學信息與智能科學技術學院
摘要: 物聯網中智能設備的互聯互通在推動社會進步的同時,也因設備異構性、協議多樣性和資源受限性導致安全威脅日益復雜化。傳統入侵檢測系統依賴特征匹配和規則定義,在面對新型攻擊和動態攻擊模式時表現出局限性。系統梳理了深度學習技術在物聯網入侵檢測系統中的應用進展,通過對比分析發現:基于深度學習的模型在檢測精度和實時性上優于傳統方法,在處理空間特征、捕捉時序依賴等方面表現突出;無監督學習和集成方法通過生成對抗樣本、融合多模型優勢,有效提升了小樣本場景下的檢測魯棒性;當前研究仍面臨數據標注成本高、邊緣計算資源受限、動態攻擊適應性不足等挑戰。總結探討了未來研究應聚焦輕量化、跨模態數據融合等方向,為構建高效、自適應的物聯網安全防護體系提供理論支撐。
中圖分類號:TP393.08文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2025.06.001
引用格式:周品希,沈岳,李偉. 基于深度學習的物聯網入侵檢測系統綜述[J].網絡安全與數據治理,2025,44(6):1-10.
A review of IoT intrusion detection systems based on deep learning
Zhou Pinxi,Shen Yue,Li Wei
College of Information and Intelligence, Hunan Agricultural University
Abstract: While the interconnection of smart devices in the Internet of Things promotes social progress, it also leads to increasingly complex security threats due to device heterogeneity, protocol diversity and resource constraints. Traditional intrusion detection systems rely on feature matching and rule definition, and show limitations when facing new attacks and dynamic attack patterns. This paper systematically sorts out the application progress of deep learning technology in the intrusion detection system of the Internet of Things. Through comparative analysis, it is found that the model based on deep learning is superior to traditional methods in detection accuracy and real-time performance, and has outstanding performance in processing spatial features and capturing temporal dependencies. Unsupervised learning and integration methods effectively improve the detection robustness in small sample scenarios by generating adversarial samples and integrating the advantages of multiple models. Current research still faces challenges such as high data annotation costs, limited edge computing resources, and insufficient adaptability to dynamic attacks. This paper summarizes and discusses the directions that future research should focus on, such as lightweight and cross-modal data fusion, to provide theoretical support for building an efficient and adaptive Internet of Things security protection system.
Key words : network security; Internet of Things; intrusion detection; deep learning

引言

物聯網(Internet of Things, IoT)的快速發展正深刻地改變著人們的生活方式和社會的運行模式。目前,物聯網應用已經覆蓋了智能家居、醫療健康、工業控制、智慧農業等各個領域。然而,物聯網設備的廣泛部署和互聯互通也帶來了嚴重的安全隱患。由于物聯網設備資源受限、異構性強、通信協議多樣等原因,以往的網絡安全防護手段難以適應這一復雜的環境,導致物聯網系統頻繁成為網絡攻擊的目標,嚴重威脅著個人隱私、企業利益及國家安全[1-2]。

入侵檢測系統(Intrusion Detection System, IDS)憑借其能夠實時監控網絡流量,檢測并響應異常行為,被廣泛應用于物聯網安全領域中。早期的IDS主要依賴于特征匹配[3]和規則定義[4],然而隨著網絡規模的大幅擴張以及網絡處理節點數量的激增,重要數據在不同的網絡節點之間生成和共享,同時舊攻擊發生突變或產生大量新型攻擊,數據傳輸量的劇增和攻擊方式的多變使其檢測效果滿足不了當前需求。

近年來,隨著深度學習在眾多領域的廣泛應用,研究人員探索了多種深度學習模型,以應對物聯網環境中復雜多變的安全威脅。在物聯網入侵檢測中,深度學習可以從大量的網絡流量和設備行為中挖掘隱蔽的模式,自動學習攻擊特征,減少對人工規則的依賴。


本文詳細內容請下載:

http://m.xxav2194.com/resource/share/2000006574


作者信息:

周品希,沈岳,李偉

(湖南農業大學信息與智能科學技術學院,湖南長沙410000) 


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产乱人伦偷精品视频| 日韩精品一区二区亚洲av观看| 有夫之妇bd中文字幕| 国产精品天干天干| 亚洲va成无码人在线观看| 中国人xxxxx69免费视频| 欧美成人免费公开播放欧美成人免费一区在线播放 | 人人爽人人爽人人片a免费| 东北疯狂xxxxbbbb中国| 欧美亚洲另类久久综合| 国产日韩欧美久久久| 久久精品免费一区二区三区| 精品久久久久国产免费| 国内午夜免费鲁丝片| 亚洲女成人图区| 精品人妻AV区波多野结衣| 国产在线一区二区杨幂| 中文无码一区二区不卡αv| 欧美成人免费观看久久| 免费中文字幕在线观看| 18禁黄污吃奶免费看网站| 影音先锋男人站| 亚洲日本一区二区一本一道| 美女张开腿让男人桶国产| 国产成人免费永久播放视频平台| 中文字幕精品亚洲无线码二区| 欧美国产日韩久久久| 欧美a在线视频| 四虎国产精品免费久久久| 99国产精品欧美一区二区三区 | 久久亚洲私人国产精品va| 福利体验区试看5次专区| 国产女人爽的流水毛片| √新版天堂资源在线资源| 波多野吉衣视频| 四虎精品久久久久影院| 91chinese在线| 国产精品国产三级国产普通话| 99爱免费观看视频在线| 成人黄软件网18免费下载成人黄18免费视频 | 麻豆回家视频区一区二|