《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于量子遺傳優(yōu)化的改進(jìn)極限學(xué)習(xí)機(jī)及應(yīng)用
基于量子遺傳優(yōu)化的改進(jìn)極限學(xué)習(xí)機(jī)及應(yīng)用
2020年信息技術(shù)與網(wǎng)絡(luò)安全第3期
李雪艷1,廖一鵬2
(1.陽(yáng)光學(xué)院 人工智能學(xué)院,福建 福州 350015; 2.福州大學(xué) 物理與信息工程學(xué)院,福建 福州 350108)
摘要: 主要研究的是神經(jīng)網(wǎng)絡(luò)的一種新型訓(xùn)練方式——極限學(xué)習(xí)機(jī)算法的優(yōu)化和改進(jìn)。首先通過與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)算法的對(duì)比,介紹極限學(xué)習(xí)機(jī)算法的主要思想和流程,展現(xiàn)其特點(diǎn)及優(yōu)勢(shì);其次,由于常規(guī)極限學(xué)習(xí)機(jī)在預(yù)測(cè)的精度上及運(yùn)用的穩(wěn)定上存在不小的缺陷,通過闡述幾個(gè)智能尋優(yōu)算法及優(yōu)缺點(diǎn)比較,引出該文的重點(diǎn)量子遺傳算法,并利用此算法去優(yōu)化極限學(xué)習(xí)機(jī)的連接權(quán)值和閾值,選取最優(yōu)的權(quán)值和閾值賦予測(cè)試網(wǎng)絡(luò),達(dá)到良好的使用效果;最后,介紹了改進(jìn)極限學(xué)習(xí)機(jī)算法在MATLAB上進(jìn)行實(shí)驗(yàn)仿真及結(jié)果分析的步驟與流程,實(shí)驗(yàn)結(jié)果說明改進(jìn)后的算法相比于經(jīng)典算法在回歸問題的預(yù)測(cè)上有優(yōu)勢(shì),預(yù)測(cè)精度更高,且結(jié)果更穩(wěn)定;在分類問題的處理上,準(zhǔn)確性也具有壓倒性優(yōu)勢(shì)。
中圖分類號(hào):TP391
文獻(xiàn)標(biāo)識(shí)碼:A
DOI: 10.19358/j.issn.2096-5133.2020.03.006
引用格式:李雪艷,廖一鵬.基于量子遺傳優(yōu)化的改進(jìn)極限學(xué)習(xí)機(jī)及應(yīng)用[J].信息技術(shù)與網(wǎng)絡(luò)安全,2020,39(3):29-34,39.
Improved extreme learning machine based on quantum genetic algorithm and its application
Li Xueyan1,Liao Yipeng2
(1.College of Artificial Intelligence,Yango University,Fuzhou 350015,China; 2.College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China)
Abstract: Artificial neural network is an important learning method of machine learning,and this paper mainly studies the optimization and improvement of the new training method of neural networkthe algorithm of extreme learning machine.This paper firstly studies traditional neural network algorithms,introduces the main ideas and processes of the algorithm, and compares it with the traditional algorithm to show its characteristics and advantages.Secondly,due to the fact that the algorithm has no small flaws in the accuracy of the prediction and the stability of the application,by describing several intelligent optimization algorithms and comparing their advantages and disadvantages, it introduces the focus of this article quantum genetic algorithm,and uses this algorithm to select the optimal weight and threshold to give the test network,to achieve good results.Finally,the steps and processes of the improved limit learning machine algorithm for experimental simulation and result analysis on MATLAB are introduced.The experimental results show that the improved algorithm has an advantage over the classical algorithm in the prediction of regression problems,with higher prediction accuracy and more stable results.The accuracy of classification is also overwhelming.
Key words : extreme learning machine;quantum genetic algorithm;regression fit;classification;artificial neural networks

0    引言

人工神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)的一種重要學(xué)習(xí)方式,而對(duì)神經(jīng)網(wǎng)絡(luò)的研究已經(jīng)很久了,有些訓(xùn)練算法已經(jīng)非常成熟,如經(jīng)典的多層前饋(Back Propagation,BP)神經(jīng)網(wǎng)絡(luò)等,應(yīng)用已經(jīng)非常廣泛,大量地應(yīng)用于回歸擬合分類問題之中。但是這種被廣泛應(yīng)用于多層前饋神經(jīng)網(wǎng)絡(luò)的經(jīng)典訓(xùn)練算法,大多是基于梯度下降的方式來(lái)調(diào)整權(quán)值和閾值。這類算法的訓(xùn)練速度慢、有可能得到的不是全局最優(yōu)而是陷入局部最優(yōu),還有著參數(shù)調(diào)整復(fù)雜的問題。HUANG G B等人在2004年提出了一種新型的前饋神經(jīng)網(wǎng)絡(luò)即極限學(xué)習(xí)機(jī)(ELM)。極限學(xué)習(xí)機(jī)(Extreme Learning Machine,ELM)是用于單隱層神經(jīng)網(wǎng)絡(luò)(Single hidden LayerFeedforward Neural networks,SLFNs)訓(xùn)練的一種高效的訓(xùn)練算法。ELM不同于經(jīng)典的神經(jīng)網(wǎng)絡(luò),它不需要梯度下降算法中繁瑣的迭代過程去調(diào)參而耗費(fèi)很多時(shí)間。其隨機(jī)產(chǎn)生所有的權(quán)值和隱層節(jié)點(diǎn)閾值。并且它在訓(xùn)練中一直不變,需要人為設(shè)定的只有節(jié)點(diǎn)個(gè)數(shù),然后求逆矩陣得到輸出權(quán)值,便能計(jì)算得到最優(yōu)值。相較于傳統(tǒng)的SLFNs,ELM的訓(xùn)練速度顯著提升,效率遠(yuǎn)高于之前算法,且泛化性能好。ELM作為優(yōu)秀的分類器,擁有良好的應(yīng)用前景。但是在實(shí)際應(yīng)用中,尤其是在處理回歸擬合的問題上,它的效果并不好,準(zhǔn)確度一般。為了達(dá)到理想的誤差精度,ELM需要龐大的隱含層神經(jīng)元。而由于它的輸入權(quán)值和閾值是隨機(jī)設(shè)定的,這導(dǎo)致龐大的基數(shù)中有很多神經(jīng)元是無(wú)效的,即存在隨機(jī)出的輸入權(quán)值和閾值為0。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.xxav2194.com/resource/share/2000003172





作者信息:

李雪艷1,廖一鵬2

(1.陽(yáng)光學(xué)院 人工智能學(xué)院,福建 福州 350015;2.福州大學(xué) 物理與信息工程學(xué)院,福建 福州 350108)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 亚洲毛片基地4455ww| 狠狠色噜噜狠狠狠狠97俺也去| 欧美成人性动漫在线观看| 青青操在线免费观看| 美女大黄三级视频在线观看| 清超市欲目录大团结| 最近中文字幕在线mv视频7| 无码熟熟妇丰满人妻啪啪软件| 女人被男人狂躁视频免费| 国产精品亚洲精品青青青| 国产一级淫片视频免费看| 亚洲美女综合网| 久久精品国产亚洲7777| www夜片内射视频日韩精品成人| 18末成年禁止观看试看一分钟| 色综合久久久久久久久久| 波多野结衣加勒比| 日本中文字幕有码在线视频| 大bbwbbwbbwvideos| 国产影片中文字幕| 亚洲韩国在线一卡二卡| 久久精品99无色码中文字幕| WWW夜片内射视频在观看视频| 国产精品永久免费10000| 男人天堂网2017| 日本精品一区二区在线播放| 在线视频1卡二卡三卡| 国产伦子系列视频6| 亚洲欧美日韩综合在线| 中文无码人妻有码人妻中文字幕 | 暖暖免费中国高清在线| 天天拍天天干天天操| 国产免费人成在线视频| 亚洲欧美另类综合日韩| 两个人在线观看的高清| 91丨九色丨蝌蚪3p| 欲乱美女诗涵番外5| 成人亚洲欧美激情在线电影| 国产手机在线αⅴ片无码观看| 亚洲色图狠狠干| 中国高清xvideossex|