《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于Hammerstein-Wiener模型的CSTR反應器辨識
基于Hammerstein-Wiener模型的CSTR反應器辨識
電子技術應用 2023年7期
韓珍珍1,2,成彬1,2,王程1,2,王云麗1,2
(1.河北省科學院應用數學研究所,河北 石家莊 050081;2.河北省信息安全認證技術創新中心,河北 石家莊 050081)
摘要: 針對化工過程中廣泛應用的連續攪拌反應釜(CSTR)反應器,提出一種新的基于極限學習機的Hammerstein-Wiener模型的辨識建模方法。其中,Hammerstein-Wiener模型的兩個非線性環節采用兩個不同的極限學習機逼近,線性環節采用自回歸ARX模型。因極限學習機的特殊結構,此模型可以表示成線性回歸的形式,最終利用廣義最小二乘法求解模型的參數。此方法辨識過程簡單,辨識過程的計算量較小。最后對CSTR的辨識結果表明,在相同條件下與基于多項式的Hammerstein 模型和ARX-LSSVM Hammerstein 模型相比,該方法具有較高辨識精度,表明了該方法的有效性。
中圖分類號:TP29
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223689
中文引用格式: 韓珍珍,成彬,王程,等. 基于Hammerstein-Wiener模型的CSTR反應器辨識[J]. 電子技術應用,2023,49(7):30-34.
英文引用格式: Han Zhenzhen,Cheng Bin,Wang Cheng,et al. Identification of CSTR based on Hammerstein-Wiener model[J]. Application of Electronic Technique,2023,49(7):30-34.
Identification of CSTR based on Hammerstein-Wiener model
Han Zhenzhen1,2,Cheng Bin1,2,Wang Cheng1,2,Wang Yunli1,2
(1.Institute of Applied Mathematics, Hebei Academy of Sciences,Shijiazhuang 050081,China; 2.Information Security Authentication Technology Innovation Center of Hebei Province,Shijiazhuang 050081,China)
Abstract: In this paper, an Hammerstein-Wiener model based on extreme learning machine is built to identify Continuous Stirred Tank Reactor(CSTR) nonlinear system which is used in chemical process widely. In the proposed Hammerstein-Wiener model, the two nonlinear blocks are described by two different extreme learning machine neural networks. The linear block is described by ARX model. Due to the special structure of the extreme learning machine, this model can be expressed in the form of linear regression. The model parameter identification is achieved by generalized least square algorithm. The identification process is simple with less computation complexity. The simulation result shows that this proposed approach is effective. Compared with Hammerstein model based polynomial and ARX-LSSVM Hammerstein model,the proposed method has higher identification accuracy.
Key words : identify;Hammerstein-Wiener model;extreme learning machine;CSTR;least square

0 引言

連續攪拌反應釜(CSTR)是工業過程中廣泛使用的一類反應器。CSTR具有高度非線性和時變性的特點,并且其機理模型非常復雜不能直接用于設計和分析控制系統。因此,為精確地描述系統在整個工作范圍內的特性,需要根據系統的輸入輸出數據,設計相應的辨識方法來建立CSTR非線性動態模型。目前一種典型的處理方法是將機理模型辨識成為易于處理的面向塊(block-orinted)的模型結構。

根據連接形式的不同,面向塊的模型結構可以分為Hammerstein[4]、Wiener,以及組合形式的Hammerstein-Wiener(H-W)模型和Wiener-Hammerstein(W-H)模型。在這4種結構中,Hammerstein和Wiener模型是兩種典型的面向塊的結構,由靜態非線性環節和動態線性環節串聯組成,并且能夠表示很多非線性系統,例如PH中和過程、電刺激肌肉、燃料電池等。Hammerstein-Wiener模型是一類具有特定結構的典型非線性系統,由一個靜態非線性環節串聯一個動態線性環節再串聯一個靜態非線性環節組成。它能夠更有效描述復雜的非線性工業過程。

近幾年,圍繞Hammerstein-Wiener模型的研究引起了越來越多的關注。針對Hammerstein-Wiener模型的參數辨識方法主要有迭代法、多信號源法、隨機梯度等方法。劉冉冉等人提出一種遞階多新息隨機梯度算法辨識Hammerstein-Wiener模型。李妍等人采用一種在線兩階段方法進行辨識。第一步采用偏差補償遞推最小二乘法在線辨識含原系統參數乘積項的參數向量。第二步采用奇異值分解法分離出原系統各參數的值。并且,一般的辨識方法中靜態非線性模塊多采用多項式擬合。多項式能夠描述普通非線性的過程,對于強非線性的過程,階次參數變多導致計算變得更加復雜,并且辨識精度也會有所下降。因此,Hammerstein-Wiener的快速辨識算法模型對于促進該模型的廣泛應用非常重要。

本文提出一種基于極限學習機的Hammerstein-Wiener模型來描述CSTR的動態過程。將CSTR的機理模型辨識成易于實施控制的Hammerstein-Wiener模型。利用極限學習機來近似模型的非線性環節,ARX模型近似模型的線性部分。仿真實驗部分比較了該算法與傳統基于多項式函數的Hammerstein模型和ARX-LSSVM Hammerstein模型預測的結果。


本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005388




作者信息:

韓珍珍1,2,成彬1,2,王程1,2,王云麗1,2

(1.河北省科學院應用數學研究所,河北 石家莊 050081;2.河北省信息安全認證技術創新中心,河北 石家莊 050081)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲日本一区二区一本一道| 国产亚洲av片在线观看播放| 一女被两男吃奶玩乳尖| 最好看的2018中文字幕国语免费 | 啊灬啊灬啊灬快灬性| 手机看片福利日韩国产| 少妇太爽了在线观看| 久久夜色精品国产亚洲| 欧美日韩亚洲一区二区精品| 免费黄色网址在线播放| 青娱乐精品视频| 国产精品伦理一二三区伦理| yjsp妖精视频网站| 日本大片免aaa费观看视频| 亚洲国产精品第一区二区| 精品一区二区久久久久久久网站 | 中文成人无字幕乱码精品区| 欧美三级中文字幕完整版| 免费一级欧美在线观看视频片| 调教家政妇第38话无删减| 国产精品久久毛片| avtt天堂网久久精品| 成在人线av无码免费高潮水| 久草资源福利站| 欧美精品在线观看| 免费能直接在线观看黄的视频免费欧洲毛片**老妇女 | 亚洲人成中文字幕在线观看| 狠狠穞老司机的福67194| 四虎永久在线精品国产馆v视影院| 99精品众筹模特私拍在线| 国产精品综合色区在线观看| www.精品在线| 成人永久免费福利视频app| 久久国产真实乱对白| 欧美11一12周岁a在线观看| 亚洲精品mv在线观看| 粉嫩大学生无套内射无码卡视频| 国产av永久精品无码| 黑人粗大猛烈进出高潮视频 | 男人的天堂欧美| 又黄又爽做受视频免费看视频下载|