《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于GrabCut的改進分割算法
基于GrabCut的改進分割算法
信息技術與網絡安全 10期
王 茜,何小海,吳曉紅,吳小強,滕奇志
(四川大學 電子信息學院 圖像信息研究所,四川 成都610065)
摘要: 針對GrabCut算法對于特征不明顯、紋理復雜的圖像分割效果不理想,且需要用戶交互的問題,提出一種基于GrabCut的改進分割算法。首先,運用圖像增強,對特征不明顯的圖像進行改善,提高圖像質量;然后,利用YOLOv4網絡對圖像進行目標檢測,獲取前景目標所在矩形框位置,從而減少用戶操作;其次,在高斯混合模型(GMM)中加入圖像像素的位置信息和局部二值模式算子(LBP)提取的像素紋理特征信息,優化高斯混合模型參數,改進GrabCut算法,實現圖像優化分割;最后,將分割圖像掩膜與原始圖像結合,得到原始圖像。實驗結果表明,對特征不明顯、紋理信息復雜的圖像,該算法分割效果更優。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.10.007
引用格式: 王茜,何小海,吳曉紅,等. 基于GrabCut的改進分割算法[J].信息技術與網絡安全,2021,40(10):43-47,52.
An improved segmentation algorithm based on GrabCut
Wang Qian,He Xiaohai,Wu Xiaohong,Wu Xiaoqiang,Teng Qizhi
(Institute of Image Information, School of Electronics and Information Engineering,Sichuan University, Chengdu 610065,China)
Abstract: To slove the problem that GrabCut does not have satisfactory segmentation effect for images with obscure features and complex textures and it needs user interaction, an improved segmentation algorithm based on GrabCut was proposed. Firstly, image enhancement was used, to improve the image with less detailed features. Secondly, YOLOv4 network was trained and the image was put in YOLOv4 to get the rectangular position of the foreground target. Thirdly, Gaussian Mixing Model(GMM) was incorporated location information of image pixels and texture feature information extracted by LBP operator, to optimize GMM model parameters and improve GrabCut algorithm. Finally, the original segmented image was obtained by combining the segmented image mask with the original image. The experimental results show that the proposed method performs better on images with less detailed features and complex texture information.
Key words : GrabCut;k-means;image enhancement;image segmentation

0 引言

圖像分割是圖像處理的重要手段之一[1],是將圖像分為不同的區域,區域內具有一定的相似性,不同區域之間的特征差異較為明顯。2001年,Boykov等[2]提出GraphCut算法,用戶在待分割圖像背景和前景上畫線,指明少量前景像素和背景像素,算法建立s-t圖,利用最小割最大流實現圖像分割。GraphCut算法采用灰度直方圖,無法分割彩色圖像。針對該問題,Rother等[3]提出GrabCut算法,用戶用矩形框標記前景位置,通過k-means將像素聚類為k類,初始化k個GMM模型,構建能量函數并利用該函數對圖像進行分割。由于GrabCut算法操作簡單,分割精度較高而被廣泛關注和應用,國內外的許多學者對該算法進行了改進。周良芬等[4]采用二次分水嶺對梯度圖像做預處理,增強圖像邊緣點,再利用熵的特性優化能量分割函數,提高圖像分割精度,但是增加了算法的復雜程度。董茜等[5]通過SLIC超像素算法對圖像進行分割,利用分割的超像素圖建立加權圖,減少節點數,提高分割效率,但傳統SLIC在紋理明顯處會出現不規則超像素塊。白雪冰等[6]將圖像從RGB空間轉化到Lab空間,再利用SLICO算法對圖像進行預處理,改善GMM模型參數,使分割不受背景凹凸紋理的干擾,可優化分割,但是仍然存在少部分過分割的問題。楊小鵬等[7]采用Faster R-CNN[8]減少用戶交互,融入圖像位置信息提高GrabCut分割效果,但對紋理復雜的圖像分割效果無明顯改善。劉靜等[9]針對背景復雜、細節豐富的皮影提取問題,采用相對總變差平滑的方法優化GrabCut分割,由于算法具有交互性,主觀的選取會影響分割結果。詹琦梁等[10]利用Mask RCNN算法對待分割圖像進行初步分割,再結合SLIC超像素分割得到的超像素塊,獲得初始三元圖,最后利用GrabCut算法對其進行分割,客觀上提高了分割精確度,卻消耗了更多的運行時間。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003802





作者信息:

王  茜,何小海,吳曉紅,吳小強,滕奇志

(四川大學 電子信息學院 圖像信息研究所,四川 成都610065)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 波多野结衣办公室jian情| 久久精品免费一区二区| 果冻传媒七夕潘甜甜在线播放| 两个人看的视频www在线高清| 一区二区日韩欧美| 久久久久久久综合色一本| 五月综合色婷婷在线观看| 亚洲国产成人久久综合碰| 国产内射xxxxx在线| 成年入口无限观看免费完整大片| 最近中文字幕无| 欧美zooz人禽交免费| 熟妇激情内射com| 精品久久久久久国产| 99久久综合狠狠综合久久aⅴ| 丁香亚洲综合五月天婷婷| 久久久婷婷五月亚洲97号色 | 97麻豆精品国产自产在线观看| 亚洲a∨无码精品色午夜| 亚洲日韩乱码中文字幕| 亚洲第一福利网站| 亚洲欧美自拍另类图片色| 亚洲精品第一国产综合精品 | 最近中文字幕在线视频| 无毒不卡在线观看| 日本亲与子乱ay中文| 日本三区精品三级在线电影| 日本高清视频在线www色下载| 日韩欧美中文字幕在线观看| 日本视频免费在线| 天天躁日日躁狠狠躁| 日本最新免费二区三区| 成年无码av片在线| 国产香港明星裸体XXXX视频| 国产精品亚洲综合天堂夜夜| 国产成人精品美女在线| 国产又黄又爽又猛的免费视频播放 | 国产国语**毛片高清视频| 体育生开房互操| 亚洲高清中文字幕综合网| 亚洲熟妇无码乱子av电影|