《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 復雜場景下SAR圖像多尺度艦船檢測算法
復雜場景下SAR圖像多尺度艦船檢測算法
電子技術應用
賀順1,王雨竹1,楊志偉2
1.西安科技大學 通信與信息工程學院;2.西安電子科技大學 電子工程學院
摘要: 針對復雜場景下的多尺度SAR艦船目標檢測存在誤檢漏檢的問題,提出了一種改進的SAR艦船目標檢測方法。首先,利用多尺度目標特征提取網絡提取特征信息,以提升多尺度目標的檢測能力并減少冗余計算。其次,引入可形變卷積(DConv)通過自適應調整卷積核的形狀來提升復雜場景下SAR艦船目標的檢測性能。最后,引入了注意力機制來抑制背景雜波并增強特征信息。實驗結果表明,在SSDD數據集和HRSID數據集上改進方法的檢測精度分別達到了97.9%和 93.1%,整體性能優于現有主流目標檢測算法。
中圖分類號:TP751 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245371
中文引用格式: 賀順,王雨竹,楊志偉. 復雜場景下SAR圖像多尺度艦船檢測算法[J]. 電子技術應用,2025,51(3):59-64.
英文引用格式: He Shun,Wang Yuzhu,Yang Zhiwei. Multi-scale ship detection algorithm in SAR images in complex scenes[J]. Application of Electronic Technique,2025,51(3):59-64.
Multi-scale ship detection algorithm in SAR images in complex scenes
He Shun1,Wang Yuzhu1,Yang Zhiwei2
1.School of Communication and Information Engineering, Xi 'an University of Science and Technology; 2.School of Electronic Engineering, Xidian University
Abstract: Aiming at the problem of false detection and missing detection in multi-scale SAR ship object detection in complex scenes, an improved SAR ship object detection method is proposed in this paper. Firstly, a multi-scale object feature extraction network (MFE-Net) is used to extract feature information to improve the detection capability of multi-scale objects and reduce redundant calculations. Secondly, deformable convolution (DConv) is introduced to improve the detection performance of SAR ships in complex scenarios by adjusting the shape of the convolution kernel adaptively. Finally, an attention mechanism is introduced to suppress background clutter and enhance feature information. The experimental results show that the detection accuracy of the proposed method on SSDD and HRSID data sets reaches 97.9% and 93.1%, respectively, and the overall performance is better than the existing mainstream object detection algorithms.
Key words : object detection;complex scenes;multi-scale ship detection;synthetic aperture radar (SAR);deep learning

引言

合成孔徑雷達(Synthetic Aperture Radar,SAR)是一種高分辨率的成像雷達,具有全天候、多角度、遠距離探測能力,不受光強和天氣條件等因素的干擾[1]。目前,隨著機器學習技術的進步,深度學習算法特征表示能力也變得越來越強大,基于深度學習的目標檢測方法憑借強大的自動提取特征的能力,在SAR艦船檢測中得到廣泛的應用[2]。目前,基于深度學習的目標檢測框架主要分為兩類,一類是兩階段檢測器,檢測精度高,但速度慢且不具備實時性,代表性的檢測器有R-CNN[3]、Fast R-CNN[4]、Faster R-CNN[5];另一類是單階段檢測器,具有端到端的性能優勢,檢測速度快,但精度略有不足。代表性的檢測器有CornerNet[6]、SSD[7]、RetinaNet[8]、CenterNet[9]、FCOS[10]、YOLO系列[11-14]。

SAR艦船圖像擁有廣泛的覆蓋范圍,因此在一張SAR艦船圖像中可能包含不同尺度的艦船。在現實的SAR圖像成像過程中,港口、島嶼和建筑物等背景會出現在SAR圖像中造成混淆,從而降低了目標檢測的準確性[15]。本研究中的復雜背景是指包含有港口、島嶼等背景元素的SAR圖像。同時,SAR的成像機制會產生一定的散斑噪聲,使得近岸艦船目標和小目標的檢測受到影響,導致漏檢和虛警。

為了解決上面的問題,本文在YOLOv5目標檢測模型的基礎上,首先用多尺度目標特征提取網絡(Multi-scale Feature Extration Netraction,MFE-Net)取代原骨干網絡,在提升多尺度目標檢測能力的同時減少冗余計算;然后通過注意力機制抑制背景雜波,增強特征融合的效果;最后引入可形變卷積[16](Deformable Convolution,DConv)設計可形變特征融合網絡(Deformable Feature Fusion Network, DFF-Net),通過自適應調整卷積核的形狀來有效檢測復雜場景下不同尺度的艦船目標。


本文詳細內容請下載:

http://m.xxav2194.com/resource/share/2000006360


作者信息:

賀順1,王雨竹1,楊志偉2

(1.西安科技大學 通信與信息工程學院,陜西 西安 710600;

2.西安電子科技大學 電子工程學院,陜西 西安 710071)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 偷看各类wc女厕嘘在线观看| 国产欧美一区二区精品久久久| 久久亚洲国产成人精品性色| 毛片基地免费视频a| 国产一卡二卡≡卡四卡免费乱码 | 一级毛片试看三分钟| 最新黄色免费网站| 亚洲精品无码久久| 精品福利一区二区三区免费视频 | 麻豆国产精品免费视频| 国内精品伊人久久久久影院对白 | 99精品国产一区二区三区不卡| 无码国产69精品久久久久孕妇| 亚洲人成人77777网站| 用我的手指搅乱我吧第五集| 国产一区韩国女主播| 五月婷婷伊人网| 国语对白刺激做受xxxxx在线| 一边摸一边叫床一边爽| 日本漫画之无翼彩漫大全| 亚洲免费网站观看视频| 浮力国产第一页| 动漫裸男露ji无遮挡网站| 超碰97人人做人人爱少妇| 国产精品VA无码一区二区| 99麻豆久久久国产精品免费| 我和岳乱妇三级高清电影| 久久精品人人做人人爽电影蜜月| 欧美性活一级视频| 伊人久久大香线蕉综合网站| 羞羞视频免费观看| 国产午夜无码精品免费看动漫| 亚洲精品国产精品国自产网站| 国产麻豆精品手机在线观看| 一本一道av无码中文字幕| 放荡女同老师和女同学生| 久久精品一区二区三区资源网| 欧美一级黄色片在线观看| 亚洲欧美日韩综合一区久久| 男人肌肌捅女人肌肌视频| 十六一下岁女子毛片免费|