《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 設(shè)計應(yīng)用 > 基于改進(jìn)YOLOv8的森林火災(zāi)探測技術(shù)研究
基于改進(jìn)YOLOv8的森林火災(zāi)探測技術(shù)研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
杜世澤,銀皓,豐大軍,句海洋,劉天龍,李帥蓉,姚云
華北計算機系統(tǒng)工程研究所
摘要: 森林火災(zāi)探測是當(dāng)前的一個重點研究方向,然而,真實的森林火災(zāi)場景中存在大量的負(fù)樣本數(shù)據(jù),嚴(yán)重影響目標(biāo)探測的性能,同時邊端側(cè)部署需要更加輕量化的模型。針對這一問題,提出了一種改進(jìn)的YOLOv8方法,該方法首先引入EfficientViT模塊到骨干網(wǎng)絡(luò)(Backbone),通過級聯(lián)分組注意力模塊,減少計算開銷;然后,在頭部網(wǎng)絡(luò)(Head)中引入CBAM模塊,對骨干網(wǎng)絡(luò)提取的特征進(jìn)行特征增強,同時抑制噪聲和無關(guān)信息;最后針對數(shù)據(jù)集的低質(zhì)量樣本,引入Wise-IoU損失函數(shù),增強數(shù)據(jù)集訓(xùn)練效果。實驗結(jié)果表明,改進(jìn)后的YOLOv8模型對森林火災(zāi)的檢測精度達(dá)到79.5%,檢測速度達(dá)到75 FPS,整個模型的參數(shù)量降低了5.7%,對森林火災(zāi)探測具有重要意義。
中圖分類號:TP391文獻(xiàn)標(biāo)識碼:ADOI:10.19358/j.issn.2097-1788.2024.10.008
引用格式:杜世澤,銀皓,豐大軍,等.基于改進(jìn)YOLOv8的森林火災(zāi)探測技術(shù)研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(10):49-56,82.
Research on forest fire detection technology based on improved YOLOv8
Du Shize,Yin Hao,Feng Dajun,Ju Haiyang,Liu Tianlong,Li Shuairong,Yao Yun
National Computer System Engineering Research Institute of China
Abstract: Forest fire detection is a key research direction at present. However, there are a large number of negative sample data in real forest fire scenarios, which seriously affects the performance of target detection. At the same time, edge to edge deployment requires more lightweight models. To address this issue, this article proposes an improved YOLOv8 method, which firstly introduces the EfficientViT module to the backbone network and reduces computational overhead by cascading group attention modules. Then, the CBAM module is introduced into the head network to enhance the features extracted by the backbone network, while suppressing noise and irrelevant information. Finally, for low-quality samples in the dataset, the Wise-IoU loss function is introduced to enhance the training effect of the dataset. The experimental results show that the improved YOLOv8 model achieves a detection accuracy of 79.5% for forest fires, a detection speed of 75 FPS, and a 5.7% reduction in the parameter count of the entire model, which is of great significance for forest fire detection.
Key words : YOLOv8; forest fire detection; image analysis; EfficientViT; attention mechanism

引言

當(dāng)前受全球氣候極端變化影響,森林火災(zāi)發(fā)生頻繁,在應(yīng)對森林火災(zāi)防范階段,我國投入了大量的人力、物力和財力,通過無人機進(jìn)行森林火災(zāi)巡護(hù)正成為一種主要的研究方向[1]。然而,使用無人機獲取的早期林火目標(biāo)尺寸較小,成像距離較遠(yuǎn),缺少紋理特征,因此,在目標(biāo)定位識別精度上還存在很大缺陷。


本文詳細(xì)內(nèi)容請下載:

http://m.xxav2194.com/resource/share/2000006196


作者信息:

杜世澤,銀皓,豐大軍,句海洋,劉天龍,李帥蓉,姚云

(華北計算機系統(tǒng)工程研究所,北京100083)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 青柠直播在线观看高清播放| 国产男女插插一级| 国产精品永久免费| 国产成人综合日韩精品无| 国产区卡一卡二卡三乱码免费 | 在线免费观看日韩视频| 国产精品VIDEOSSEX久久发布| 国产剧果冻传媒星空在线| 又爽又黄又无遮挡的视频在线观看 | 91福利视频免费观看| 亚洲日本人成中文字幕| 色哟哟网站在线观看| 狠狠久久精品中文字幕无码| 果冻传媒和91制片厂| 成人免费无码大片A毛片抽搐色欲| 在线播放国产一区二区三区| 国产成人久久91网站下载| 初女破苞国语在线观看免费| 亚洲宅男天堂在线观看无病毒| 久久久久国色av免费观看| 99精品国产高清自在线看超| 黑人巨大videos极度另类| 第一福利官方航导航| 日韩精品国产自在久久现线拍| 在线观看免费视频一区| 奇米四色77777| 国产精品美女久久久浪潮av| 国产91在线|日韩| 亚洲午夜精品一级在线播放放| 中文字幕乱伦视频| 亚洲视频456| 狂野欧美激情性xxxx在线观看| 日本男人操女人| 国产精品视频第一区二区三区| 啊啊啊好大在线观看| 久草福利资源网站免费| 99re在线精品视频免费| 美国式的禁忌80版| 日韩在线一区二区三区| 国产精品酒店视频免费看| 免费黄色软件在线观看|