《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于云模型的變分自編碼器數據壓縮方法*
基于云模型的變分自編碼器數據壓縮方法*
電子技術應用
郭秋燕,胡 磊,代 勁
(1.重慶醫科大學附屬第一醫院 信息中心,重慶 400016;2.重慶醫科大學醫學數據研究院,重慶 400016; 3.重慶郵電大學 計算智能重慶市重點實驗室,重慶 400065)
摘要: 圖像數據解壓縮問題是一類重要的數據處理問題,數據特征學習在數據壓縮研究中有重要的研究價值。提出了一種基于云模型的變分自編碼器特征表征模型,將云模型作為變分自編碼器的先驗分布,解決變分自編碼器在特征表征上的局限性。變分自編碼器的編碼器部分負責構建數據的特征空間,通過在該空間中采樣獲得隱變量,完成數據壓縮;解碼器部分完成從數據特征到原數據的生成,即數據的解壓。在人臉數據集上與原方法作實驗對比,驗證了該方法的正確性和有效性。
中圖分類號:TP183 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233928
中文引用格式: 郭秋燕,胡磊,代勁. 基于云模型的變分自編碼器數據壓縮方法[J]. 電子技術應用,2023,49(10):96-99.
英文引用格式: Guo Qiuyan,Hu Lei,Dai Jin. Variational autoencoder data compression algorithm based on cloud model[J]. Application of Electronic Technique,2023,49(10):96-99.
Variational autoencoder data compression algorithm based on cloud model
Guo Qiuyan1,Hu Lei1,2,Dai Jin3
(1.Information Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016,China; 2.Medical Data Science Academy of Chongqing Medical University,Chongqing 400016,China;3.Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065,China)
Abstract: Image data decompression is a kind of important data processing problem. Data feature learning has important research value in data compression research. This paper proposes a feature representation model of variational autoencoder based on cloud model, which takes the cloud model as the prior distribution of variational autoencoder and solves its limitation in feature representation. The encoder of the variational autoencoder is responsible for constructing the feature space of data, obtaining hidden variables by sampling in the space, and completing data compression. The decoder completes the generation from data features to raw data, that is the decompression of data. The correctness and effectiveness of the proposed method are verified by the experimental comparison with the original method on face dataset.
Key words : cloud model;variational autoencoder;hidden variable space;data compression;data reconstruction

0 引言

隨著圖像數據分辨率的提高,數據也越來越大,因此找到一種高效的數據壓縮方法對于網絡傳輸來說至關重要。隨著研究的不斷深入,有了各種場景下的壓縮方法。文獻[1]-[3]通過字典學習和壓縮感知的方法來實現數據壓縮,如劉迎娜[2]采用K奇異值分解(K-Singular Value Decomposition, K-SVD)字典學習方法構建出壓縮字典,實現數據的壓縮;文獻[4]-[6]通過特征編碼的方式來完成數據特征的學習,并通過重構的方式來完成數據解壓。如王迎港[4]對特征進行差分編碼實現數據壓縮傳輸;還有通過降低數據之間的耦合度來實現數據壓縮,如夏信等[7]通過卷積神經網絡來降低數據間的耦合度從而降低數據的傳輸量。另外,文獻[8]通過MVC模型來實現數據壓縮,袁子越[9]等人通過知識圖譜和模糊度分析的方法對數據分類,并使用空間重構方法實現數據的壓縮。

隨著深度學習的發展,其在數據特征學習的能力突出,擅長處理海量的數據,數據量越多模型的表征能力越強,因此海量的數據促進了深度學習的進步與發展。近年來深度學習也漸漸被用于數據解壓縮任務。變分自編碼器[10]作為一類重要的數據生成模型,可以完成數據的特征表征,在數據生成方面已經有較多的研究。

圖像數據的特征空間是具有連續性的,各特征之間也是有差異性的,變分自編碼器通過特征表征得到數據特征,將數據特征作為數據傳輸的對象,因此降低了數據在傳輸過程中的復雜度;在數據接收端再通過數據特征對數據進行生成,完成數據的傳輸,并且整個模型的網絡結構較簡單,因此數據的壓縮和解壓耗時短,提高了數據的壓縮速率及傳輸速率。

本文的主要貢獻為:(1)提出一種基于云模型[11]的變分自編碼器先驗變體模型,提高模型的表征能力;(1)提出一種新的基于生成模型的解壓縮方法,降低特征耦合度,提升模型的壓縮能力。



本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005720




作者信息:

郭秋燕1,胡磊1,2,代勁3

(1.重慶醫科大學附屬第一醫院 信息中心,重慶 400016;2.重慶醫科大學醫學數據研究院,重慶 400016;3.重慶郵電大學 計算智能重慶市重點實驗室,重慶 400065)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲乱码国产乱码精品精| 视频二区好吊色永久视频| 91不卡在线精品国产| jjizz全部免费看片| 黄色aaa毛片| 美女扒开尿口让男人插| 直接进入免费看黄的网站| 欧美激情一区二区三区中文字幕| 欧美a级v片不卡在线观看| 超清中文乱码字幕在线观看 | 国产精品夜夜爽范冰冰| 好大好硬使劲脔我爽视频| 怡红院亚洲红怡院在线观看| 少妇人妻偷人精品视频| 国产精品美女一区二区视频| 国产激情精品一区二区三区 | 欧美肥妇毛多水多bbxx水蜜桃| 欧美黑人5o厘米全进去| 欧美精品99久久久久久人| 欧美天天综合色影久久精品| 日韩精品第一页| 日本在线观看免费看片| 日本亚洲黄色片| 少妇被又大又粗又爽毛片久久黑人| 恋男乱女颖莉慰问军营是第几章| 无人在线观看视频高清视频8| 91传媒蜜桃香蕉在线观看| 97一区二区三区四区久久| 67194成手机免费观看| 2022国产成人精品视频人| 亚洲日本va在线观看| 韩国美女主播免费的网站| 国产网站麻豆精品视频| 青青操免费在线视频| 高潮毛片无遮挡高清免费视频| 中日韩欧一本在线观看| 九九热在线视频播放| 中文字幕第五页| japanese日本护士xxxx18一19| 97久久精品无码一区二区天美| baby直播看片下载|