《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 基于levy飛行優化BOA-BP網絡的電池SOC估計
基于levy飛行優化BOA-BP網絡的電池SOC估計
2023年電子技術應用第4期
李暢,王琪,姜佳怡
(西安工業大學 電子信息工程學院, 陜西 西安710021)
摘要: 目前電動汽車動力輸出的來源主要是動力電池,其荷電狀態(State of Charge,SOC)表示電池的剩余電量情況,精確估算SOC對于電池的使用安全有重要意義。將蝴蝶優化算法( Butterfly Optimization Algorithm,BOA)進行改進并用于優化BP神經網絡估算動力電池SOC,解決了普通BP網絡估計SOC時遇到的訓練時間長、收斂慢、精度較低、易陷入局部最優解的問題;同時提升了全局搜索速度,選取電壓和電流為輸入變量、SOC為輸出變量,根據誤差的大小調整神經網絡的權值和閾值。仿真結果表明,優化后得到的SOC估計結果誤差率控制在1.1%以內,該方法尋優速度快,具有更好的魯棒性。
中圖分類號:TP13
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.222834
中文引用格式: 李暢,王琪,姜佳怡. 基于levy飛行優化BOA-BP網絡的電池SOC估計[J]. 電子技術應用,2023,49(4):88-91.
英文引用格式: Li Chang,Wang Qi,Jiang Jiayi. Battery SOC estimation based on Levy flight optimization of BOA-BP network[J]. Application of Electronic Technique,2023,49(4):88-91.
Battery SOC estimation based on Levy flight optimization of BOA-BP network
Li Chang,Wang Qi,Jiang Jiayi
(College of Electronic Information Engineering, Xi′an Technological University, Xi′an 710021, China)
Abstract: At present, the power output of electric vehicles is mainly derived from power batteries, whose State of Charge (SOC) represents the remaining power of batteries. Accurate estimation of SOC is of great significance for the safety of battery use . Butterfly Optimization Algorithm (BOA) was improved and used to optimize BP neural network to estimate SOC of power battery, which solved the problems of long training time, slow convergence, low accuracy and easy to fall into local optimal solution. At the same time, the global search speed is improved, voltage and current are selected as input variables, SOC as output variables, and the weight and threshold of neural network are adjusted according to the size of error. Simulation results show that the error rate of SOC estimation results obtained after optimization is controlled within 1.1%, and this method has better robustness and faster optimization speed.
Key words : charged state estimation;Butterfly optimization algorithm;BP neural network;Levy flight

0 引言

目前,傳統汽車由于其工作機理的限制而必須使用石油等不可再生資源作為燃料,同時尾氣排放也對環境造成很大污染,新能源汽車因其低碳環保的特點而逐漸被大家所認可。不同于傳統能源,電動汽車剩余電量無法直接通過測量得到,需要對其進行狀態估計,SOC估計對于判斷汽車剩余可行駛里程、消除駕駛者的里程焦慮、防止過充過放具有重要作用。除此之外,擁有正確的SOC可增加動力電池的使用壽命以及在電量均衡等領域給予數據支撐。電池內部本身是一個強非線性系統,常規的物理方法不能夠對SOC進行準確估計。神經網絡算法可以在不用建模的情況下更好地處理電池的非線性特征,模擬電池的動態特性并對電池SOC估計,但因BP算法存在的估算精度低、魯棒性不高、收斂慢等問題,所以有必要將BP算法進行優化,提高其在SOC估計中的精度和適用。

2019年,Arora等人觀察蝴蝶的覓食行為以及交配行為提出了一種智能算法——BOA算法。算法簡單易于實現,全局搜索效率較高,與此同時存在易陷入局部最優的缺陷。針對這個問題,本文利用加入Levy飛行蝴蝶優化算法建立改進的BOA-BP神經網絡模型進行MATLAB仿真實驗,比較BP與優化后模型的SOC估計值,從而驗證改進后算法的精準程度。



本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005289




作者信息:

李暢,王琪,姜佳怡

(西安工業大學 電子信息工程學院, 陜西 西安710021)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 中文字幕ヘンリー冢本全集| 国产亚洲精品欧洲在线观看| 久久精品国产欧美日韩| 蜜桃AV无码免费看永久| 快播电影网日韩新片| 亚洲精品自在线拍| 色婷婷天天综合在线| 日本xxxx裸体bbbb| 伊人色综合一区二区三区| youjizz亚洲| 成都4片p高清视频| 亚洲精品人成无码中文毛片| 国产精品亚洲w码日韩中文| 成人免费草草视频| 亚洲成av人片在线观看无码| 被夫上司强迫的女人在线| 天堂在线中文字幕| 久久精品无码精品免费专区| 精品一区精品二区制服| 国产精品99在线观看| 中文字幕一区二区三区精彩视频| 欧美精品久久天天躁| 国产亚洲人成网站观看| 99国产精品久久久久久久成人热 | 99在线视频免费观看| 日韩精品欧美国产精品亚| 免费无码AV一区二区三区| 人人影院免费大片| 性调教室高h学校| 亚洲一级毛片在线观| 精品国产美女福利到在线不卡| 国产精品久久精品视| 一道本在线视频| 最近最新中文字幕完整版免费高清 | 内射少妇一区27P| 1819sextub欧美中国| 成人欧美一区二区三区黑人3p | 亚洲欧美日韩久久精品第一区| 青青热久免费精品视频精品| 女人让男人直接桶| 九九精品国产99精品|