《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于5G架構超密集組網粒子群優化算法改進
基于5G架構超密集組網粒子群優化算法改進
2023年電子技術應用第1期
彭昇1,趙建保2,魏敏捷3
1.上海電力大學 電子信息工程學院,上海 201306;2.國網信息通信產業集團有限公司,北京 102200; 3.上海電力大學 電氣工程學院,上海 201306
摘要: 隨著移動通信技術的發展,傳統智能終端設備無法滿足快速增長的海量數據計算要求,移動邊緣計算為物聯網中移動用戶提供了低延遲和靈活的計算方案。綜合考慮邊緣服務器上有限的計算資源以及網絡中用戶的動態需求,提出通過二進制粒子群優化算法分配發射功率優化傳輸能耗。將請求卸載與資源調度作為雙重決策問題進行分析,基于粒子群優化算法提出了一種新的多目標優化算法求解該問題。仿真結果表明,二進制粒子群優化算法可以節省傳輸能耗,且具有良好的收斂性。所提出的新算法在響應率方面優于現有算法,在動態邊緣計算網絡中可以保持良好的性能。
中圖分類號:TN929.5;TN301.6
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223278
中文引用格式: 彭昇,趙建保,魏敏捷. 基于5G架構超密集組網粒子群優化算法改進[J]. 電子技術應用,2023,49(1):69-74.
英文引用格式: Peng Sheng,Zhao Jianbao,Wei Minjie. Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture[J]. Application of Electronic Technique,2023,49(1):69-74.
Improvement of particle swarm algorithm based on ultra-dense networking under 5G architecture
Peng Sheng1,Zhao Jianbao2,Wei Minjie3
1.College of Electronic Information Engineering,Shanghai University of Electric Power, Shanghai 201306, China; 2.State Grid Information and Telecommunication Group Co., Ltd., Beijing 102200, China; 3.College of Electrical Engineering,Shanghai University of Electric Power, Shanghai 201306, China
Abstract: With the development of mobile communication technology, traditional intelligent terminal devices cannot meet the rapidly growing massive data computing requirements. Mobile edge computing provides low-latency and flexible computing solutions for mobile users in the Internet of Things. Considering the limited computing resources on the edge server and the dynamic needs of users in the network, this paper proposes to allocate the transmit power to optimize the transmission energy consumption through the binary particle swarm optimization algorithm. Analyzing request offloading and resource scheduling as a dual decision-making problem, a new multi-objective optimization algorithm based on particle swarm optimization algorithm is proposed to solve the problem. The simulation results show that the binary particle swarm optimization algorithm can save transmission energy and has good convergence. The proposed new algorithm outperforms existing algorithms in terms of response rate and can maintain good performance in dynamic edge computing networks.
Key words : edge computing;resource optimization;particle swarm optimization;task offloading

0 引言

    隨著移動通信技術的迅速發展,物聯網中的終端設備(例如智能手機、智能家居、智能汽車等)都可以通過互聯網來進行相互連接[1]。近年來,移動設備類型及數量呈指數增長,目前移動設備往往為了具備便攜性與簡易性,而缺乏足夠的計算能力及容量來滿足應用的服務質量要求。移動邊緣計算(Mobile Edge Computing,MEC)是物聯網邊端設備執行計算請求的方法[2],移動網絡運營商與云服務提供商在邊端服務器中部署豐富的計算資源,在邊端中對移動終端設備所產生的大量數據進行計算處理。

    邊緣計算資源調度的核心觀點是通過優化移動邊緣計算來提高計算資源與能力從而滿足用戶的需求。網絡運營商開始普遍構建5G架構的超密集組網(Ultra-Dense Network,UDN)多基站協同服務場景[3]。在UDN中通過部署宏基站(Macro-cell Base Station,MBS)與多個微基站(Small-cell Base Station,SBS)實現極高的頻率復用,極大提高了覆蓋地區的系統容量與計算能力。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005079




作者信息:

彭昇1,趙建保2,魏敏捷3

(1.上海電力大學 電子信息工程學院,上海 201306;2.國網信息通信產業集團有限公司,北京 102200;

3.上海電力大學 電氣工程學院,上海 201306) 




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 无码专区HEYZO色欲AV| 亚洲成aⅴ人片在线观| 久久国产综合精品swag蓝导航| 色悠久久久久久久综合网| 最新69堂国产成人精品视频| 国产一级黄色网| va亚洲va欧美va国产综合| 欧美特黄一片aa大片免费看| 国产成人免费a在线视频色戒 | 老司机在线精品| 日本精品少妇一区二区三区| 再深点灬舒服了灬太大了乡村| 91精品国产91久久久久久最新| 日韩精品福利在线| 午夜福利啪啪片| 3d玉蒲团之极乐宝鉴| 日本口工全彩无遮拦漫画大| 免费足恋视频网站女王| 4444在线观看片| 尤物精品视频一区二区三区| 亚洲春色第一页| 视频一区在线播放| 天天操天天射天天插| 亚洲va欧美va国产综合| 美女扒开腿让男人捅| 国产精品资源站| 久久99精品久久只有精品| 特大巨黑人吊性xxx视频| 国产日韩欧美久久久| 一本色道无码道在线观看| 欧美亚洲国产激情一区二区| 国产中文字幕在线播放| 亚洲综合五月天欧美| 成人精品一区二区不卡视频| 亚洲欧美在线播放| 视频免费1区二区三区| 国产精品久久久| 一级片网站在线观看| 欧美人与动性行为网站免费| 人妻少妇精品久久| 高清对白精彩国产国语|