《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究
基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究
2021年電子技術應用第7期
邵 琪1,包永強2,姜家輝1,張旭旭1
1.南京工程學院 電力工程學院,江蘇 南京211167;2.南京工程學院 信息與通信工程學院,江蘇 南京211167
摘要: 提取有效的負荷運行數據特征對于提高非侵入式負荷識別的精度具有重要作用。針對數據特征選擇欠佳導致負荷識別準確率不高的問題,提出了一種基于ReliefF-DDC特征選擇算法,用于降低特征維數減少復雜度,改善負荷識別效果。首先,利用ReliefF算法分析各特征與類別的關系計算特征權重,篩選無關特征;其次,利用DDC算法計算特征之間與類別的互信息分析相關性,根據特征子集評價度量刪除冗余特征;最后,采用孿生支持向量機(TWSVM)作分類器進行負荷識別。實驗表明,所提出的算法在提升分類效果的同時減少了運行時間。
中圖分類號: TN911;TM714
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式: 邵琪,包永強,姜家輝,等. 基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究[J].電子技術應用,2021,47(7):74-77,82.
英文引用格式: Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm
Shao Qi1,Bao Yongqiang2,Jiang Jiahui1,Zhang Xuxu1
1.School of Electrical Engineering,Nanjing Institute of Technology,Nanjing 211167,China; 2.School of Information and Communication Engineering,Nanjing Institute of Technology,Nanjing 211167,China
Abstract: Extracting effective characteristics of load operation data plays an important role in improving the accuracy of non-intrusive load identification.In this paper, a ReliefF-DDC feature selection algorithm was proposed to reduce feature dimension, reduce complexity and improve load recognition.Firstly, ReliefF algorithm was used to analyze the relationship between each feature and category, calculate feature weight, and screen irrelevant features.Secondly, DDC algorithm is used to calculate the mutual information analysis correlation between features and categories, and redundant features are removed according to feature subset evaluation measurement. Finally, twin support vector machine(TWSVM) is used as classifier for load recognition. Experiments show that the algorithm proposed in this paper improves the classification effect and reduces the running time.
Key words : ReliefF;DDC;TWSVM; feature selection; load identification

0 引言

    非侵入式負荷監測法(Non-Intrusive Load Monitoring,NILM)為實現智能電網和用戶之間的互動提供了數據支持,該方法在接戶線入口處安裝傳感器,采集總負荷的電壓、電流等電氣量數據進行分析,細化系統數據,從而辨識家用電器的類別及運行狀態[1]。相比于侵入式負荷監測法(Intrusive Load Monitoring,ILM),NILM具有成本低、用戶接受度高、后期維護方便等優勢,但是該方法對于負荷分解算法的要求較高。特征提取和負荷識別作為NILM中兩大關鍵技術[2],為NILM的發展提供了強有力的技術支持。特征選擇作為處理已提取特征的重要手段,是目前研究的熱點之一。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003659




作者信息:

邵  琪1,包永強2,姜家輝1,張旭旭1

(1.南京工程學院 電力工程學院,江蘇 南京211167;2.南京工程學院 信息與通信工程學院,江蘇 南京211167)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产香蕉国产精品偷在线| 日韩无套内射视频6| 华人亚洲欧美精品国产| 777精品视频| 好吊操视频在线| 久久精品久久久| 18女人毛片大全| 成人无码午夜在线观看| 亚洲AV无码成人网站在线观看 | 色综合久久98天天综合| 国产精品欧美亚洲| 一区二区三区免费高清视频| 日韩中文字幕在线播放| 亚洲欧洲日本在线观看| 福利视频导航大全| 国产一区二区小早川怜子| 欧美精品www| 我和岳乱妇三级高清电影| 亚洲中文字幕人成乱码| 玩肥熟老妇BBW视频| 国产jizzjizz免费视频| 久久综合久久鬼| 成人午夜精品无码区久久| 亚洲av无码成人精品区狼人影院| 玉蒲团之偷情宝典| 国产中文字幕视频在线观看| 亚洲日本久久一区二区va| 在线看片无码永久免费aⅴ| 一色屋精品视频任你曰| 日本韩国中文字幕| 亚洲免费人成在线视频观看| 热99在线视频| 午夜影视在线观看| 100款夜间禁用b站软件下载| 女人高潮特级毛片| 丰满岳乱妇一区二区三区| 最近中文字幕mv在线视频www| 亚洲男人的天堂久久精品| 精品人妻中文字幕有码在线| 国产亚洲情侣一区二区无| 亚洲欧美日韩精品久久奇米色影视|