《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于ReliefF-DDC特征選擇算法的非侵入式負(fù)荷識(shí)別研究
基于ReliefF-DDC特征選擇算法的非侵入式負(fù)荷識(shí)別研究
2021年電子技術(shù)應(yīng)用第7期
邵 琪1,包永強(qiáng)2,姜家輝1,張旭旭1
1.南京工程學(xué)院 電力工程學(xué)院,江蘇 南京211167;2.南京工程學(xué)院 信息與通信工程學(xué)院,江蘇 南京211167
摘要: 提取有效的負(fù)荷運(yùn)行數(shù)據(jù)特征對(duì)于提高非侵入式負(fù)荷識(shí)別的精度具有重要作用。針對(duì)數(shù)據(jù)特征選擇欠佳導(dǎo)致負(fù)荷識(shí)別準(zhǔn)確率不高的問題,提出了一種基于ReliefF-DDC特征選擇算法,用于降低特征維數(shù)減少復(fù)雜度,改善負(fù)荷識(shí)別效果。首先,利用ReliefF算法分析各特征與類別的關(guān)系計(jì)算特征權(quán)重,篩選無關(guān)特征;其次,利用DDC算法計(jì)算特征之間與類別的互信息分析相關(guān)性,根據(jù)特征子集評(píng)價(jià)度量刪除冗余特征;最后,采用孿生支持向量機(jī)(TWSVM)作分類器進(jìn)行負(fù)荷識(shí)別。實(shí)驗(yàn)表明,所提出的算法在提升分類效果的同時(shí)減少了運(yùn)行時(shí)間。
中圖分類號(hào): TN911;TM714
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式: 邵琪,包永強(qiáng),姜家輝,等. 基于ReliefF-DDC特征選擇算法的非侵入式負(fù)荷識(shí)別研究[J].電子技術(shù)應(yīng)用,2021,47(7):74-77,82.
英文引用格式: Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm
Shao Qi1,Bao Yongqiang2,Jiang Jiahui1,Zhang Xuxu1
1.School of Electrical Engineering,Nanjing Institute of Technology,Nanjing 211167,China; 2.School of Information and Communication Engineering,Nanjing Institute of Technology,Nanjing 211167,China
Abstract: Extracting effective characteristics of load operation data plays an important role in improving the accuracy of non-intrusive load identification.In this paper, a ReliefF-DDC feature selection algorithm was proposed to reduce feature dimension, reduce complexity and improve load recognition.Firstly, ReliefF algorithm was used to analyze the relationship between each feature and category, calculate feature weight, and screen irrelevant features.Secondly, DDC algorithm is used to calculate the mutual information analysis correlation between features and categories, and redundant features are removed according to feature subset evaluation measurement. Finally, twin support vector machine(TWSVM) is used as classifier for load recognition. Experiments show that the algorithm proposed in this paper improves the classification effect and reduces the running time.
Key words : ReliefF;DDC;TWSVM; feature selection; load identification

0 引言

    非侵入式負(fù)荷監(jiān)測(cè)法(Non-Intrusive Load Monitoring,NILM)為實(shí)現(xiàn)智能電網(wǎng)和用戶之間的互動(dòng)提供了數(shù)據(jù)支持,該方法在接戶線入口處安裝傳感器,采集總負(fù)荷的電壓、電流等電氣量數(shù)據(jù)進(jìn)行分析,細(xì)化系統(tǒng)數(shù)據(jù),從而辨識(shí)家用電器的類別及運(yùn)行狀態(tài)[1]。相比于侵入式負(fù)荷監(jiān)測(cè)法(Intrusive Load Monitoring,ILM),NILM具有成本低、用戶接受度高、后期維護(hù)方便等優(yōu)勢(shì),但是該方法對(duì)于負(fù)荷分解算法的要求較高。特征提取和負(fù)荷識(shí)別作為NILM中兩大關(guān)鍵技術(shù)[2],為NILM的發(fā)展提供了強(qiáng)有力的技術(shù)支持。特征選擇作為處理已提取特征的重要手段,是目前研究的熱點(diǎn)之一。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.xxav2194.com/resource/share/2000003659




作者信息:

邵  琪1,包永強(qiáng)2,姜家輝1,張旭旭1

(1.南京工程學(xué)院 電力工程學(xué)院,江蘇 南京211167;2.南京工程學(xué)院 信息與通信工程學(xué)院,江蘇 南京211167)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 亚洲中文字幕日产乱码高清app| 国产一区二区三区在线| youjizz护士| 日韩中文在线视频| 亚洲无人区视频大全| 精品国偷自产在线| 国产在线精品美女观看| 亚洲va久久久噜噜噜久久天堂 | 制服丝袜一区在线| 少妇被又大又粗又爽毛片久久黑人| 五月婷婷色丁香| 草草久久久无码国产专区| 国产色综合久久无码有码| 久久精品国产久精国产果冻传媒| 爱情岛永久入口网址首页| 国产suv精品一区二区6| 日本免费色网站| 在线观看国产亚洲| 亚洲av无码片一区二区三区| 男女啪啪高清无遮挡免费| 国产专区第一页| 五月开心激情网| 国内精品哆啪啪| 久久天天躁狠狠躁夜夜不卡| 欧美黑人5o厘米全进去| 午夜啪啪福利视频| 韩国理论三级在线观看视频| 国产精品午夜无码AV天美传媒| jizz免费在线观看| 把极品白丝班长啪到腿软| 久草电影在线观看| 欧美日韩亚洲电影网在线观看| 免费一级大片儿| 美女黄18以下禁止观看| 国内精品久久久久影院一蜜桃| 三级毛片在线免费观看| 日本欧美视频在线观看| 亚洲gv天堂无码男同在线观看 | 久久亚洲国产精品五月天婷| 精品久久久久久久久久中文字幕| 国产在线拍偷自揄拍无码|