《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于邊緣計算中極端姿態和表情的人臉識別
基于邊緣計算中極端姿態和表情的人臉識別
2021年電子技術應用第6期
況朝青1,2,3,賀 超1,2,3,王均成1,2,3,鄒建紋1,2,3
1.重慶郵電大學 通信與信息工程學院,重慶 400065;2.重慶高校市級光通信與網絡重點實驗室,重慶 400065; 3.泛在感知與互聯重慶市重點實驗室,重慶 400065
摘要: 隨著信息技術的發展,人臉識別在支付、工作和安防系統中應用的越來越多。在邊緣計算系統中,為了處理的速度,通常選擇較小的神經網絡進行人臉識別,這樣會導致識別率低。并且在實際應用中大多都是對于圖片質量較高的人臉可以很好地識別,但對于受光照影響較大、表情和姿態變化大的圖片識別率不是很高。因此,選擇SqueezeNet輕量級網絡,該網絡層數小,可以很好地運用于邊緣計算系統中。采用了預處理的方法來對圖片進行預處理,然后改進了SqueezeNet網絡的損失函數以及加入了ResNet網絡中的殘差學習方法。最后通過對LFW和IJB-A數據集進行測試,該研究方法明顯提高了識別率。
中圖分類號: TN911.73;TP391.4
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200968
中文引用格式: 況朝青,賀超,王均成,等. 基于邊緣計算中極端姿態和表情的人臉識別[J].電子技術應用,2021,47(6):30-34.
英文引用格式: Kuang Chaoqing,He Chao,Wang Juncheng,et al. Face recognition with extreme posture and expression[J]. Application of Electronic Technique,2021,47(6):30-34.
Face recognition with extreme posture and expression
Kuang Chaoqing1,2,3,He Chao1,2,3,Wang Juncheng1,2,3,Zou Jianwen1,2,3
1.School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2.Optical Communications and Networks Key Laboratory of Chongqing,Chongqing 400065,China; 3.Ubiquitous Sensing and Networking Key Laboratory of Chongqing,Chongqing 400065,China
Abstract: With the development of information technology, face recognition is used more and more in payment, work and security system. In the edge computing system, in order to deal with the speed, we usually choose a smaller neural network for face recognition, which may cause the recognition rate is not very high. And in practical applications, most of them can recognize the face with high image quality, but the recognition rate is not very high for the face which is greatly affected by the light and has great changes in expression and posture. Therefore, this paper chooses the SqueezeNet lightweight network, which has a small number of layers and can be well used in edge computing system. The method of preprocessing is used to preprocess the image, and then the loss function of SqueezeNet network and the residual learning method of ResNet network are improved. Finally, through the test of LFW and IJB-A data set, it is concluded that the research method in this paper can significantly improve the recognition rate.
Key words : neural network;face recognition;preprocessing;SqueezeNet network;ResNet network

0 引言

    近年來,人臉識別受到越來越多的關注,主要是通過神經網絡模型來進行人臉識別。但人臉識別依然是一個非常重要但又極具挑戰性的問題,主要是現在大部分的人臉識別采用的圖像都是靜態和質量較高的圖片,所以識別效果很好。但在實際應用中,人臉圖像受到光照、表情和較大的姿態變化的影響,可能導致識別率急劇下降。因此,采用一種預處理的方式來處理圖片,提高圖片的質量,成為了當下研究的關鍵[1]。并且在邊緣計算系統中,采用大型網絡來進行人臉識別是不現實的,主要是受到處理器的速度和功耗的影響,因此這方面的應用成為了研究的熱點。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003569




作者信息:

況朝青1,2,3,賀  超1,2,3,王均成1,2,3,鄒建紋1,2,3

(1.重慶郵電大學 通信與信息工程學院,重慶 400065;2.重慶高校市級光通信與網絡重點實驗室,重慶 400065;

3.泛在感知與互聯重慶市重點實驗室,重慶 400065)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 天堂在线www资源在线下载| 欧美视频亚洲视频| 国产熟女露脸大叫高潮| 亚洲色成人www永久网站| 97在线公开视频| 无敌影视手机在线观看高清| 国产在线看片网站| 四虎国产精品永久在线播放| 一本色道久久88—综合亚洲精品 | 亚洲图片校园春色| 精品国产一区AV天美传媒| 国产黄视频网站| 久久综合第一页| 波多野结衣无限| 国产欧美日韩一区二区加勒比| jizz性欧美2| 欧美一卡2卡3卡4卡5卡视频免费| 国产亚洲欧美久久精品| 中文字幕专区高清在线观看| 沦为色老头狂欲的雅婷| 国产在线视频一区二区三区98| 一级成人毛片免费观看| 日韩男人的天堂| 亚洲欧洲精品成人久久曰影片| 韩国一级淫片漂亮老师| 嫩草视频在线看| 亚洲国产欧美国产综合一区| 精品久久久无码人妻中文字幕 | 亚洲最大成人网色| 色综合一区二区三区| 国产精品免费观看| 中文字幕巨大乳在线看| 毛茸茸性XXXX毛茸茸毛茸茸| 国产在线观看免费不卡| 97人人模人人爽人人少妇| 日本理论片午午伦夜理片2021| 伊人久久青草青青综合| 四虎国产精品永久地址入口| 69无人区卡一卡二卡| 日本一道综合久久aⅴ免费| 亚洲精品电影网|