《電子技術應用》
您所在的位置:首頁 > EDA與制造 > 業界動態 > Imec與CARDIS合作伙伴開發出獨特的光子醫療器械——用于篩查動脈硬度和診斷心血管疾病

Imec與CARDIS合作伙伴開發出獨特的光子醫療器械——用于篩查動脈硬度和診斷心血管疾病

2019-01-17
關鍵詞: 光子 醫療器械 IMEC

  比利時魯汶和根特,2019年1月5日 — 世界領先的納米電子和數字技術研究與創新中心imec、根特大學、Medtronic和其他CARDIS項目合作伙伴共同開發了一款基于硅光子學的原型醫療器械,用于篩查動脈硬度和診斷動脈狹窄、心力衰竭等心血管疾病。INSERM在法國巴黎的蓬皮杜歐洲醫院(Georges Pompidou European Hospital)針對100名患者成功完成了臨床可行性研究。

  Cardiovascular disease (CVD) is among the leading causes of death globally. Early identification of individuals at risk allows for early intervention to halt or reverse the pathological process. Assessment of arterial stiffness by measurement of aortic pulse wave velocity (aPWV) is included in the latest guidelines for CVD risk prediction and it is a key marker for hypertension. However, no tools are available today to easily screen a large number of patients for arterial stiffness at a GP’s office. As a consequence, many individuals remain undiagnosed.

  In the Horizon 2020 project CARDIS, imec, Medtronic, and 7 other partners, have developed a prototype mobile, low-cost, point-of-care screening device for CVD. The device aims for measurement in a fast, reproducible and reliable way with minimal physical contact with the patient and minimal skills from the operator. The operating principle of the device is Laser Doppler Vibrometry (LDV), in which a very low-power laser is directed towards the skin overlying an artery. The skin’s vibration amplitude and frequency, resulting from the heart beat, are extracted from the Doppler shift of the reflected beam. The device includes two rows of six beams, thereby scanning multiple points on the skin above the artery in parallel.

  At the heart of the system is a silicon photonics chip containing the optical functionality of the multi-beam LDV device. The CARDIS chip was designed by the Photonics Research Group, an imec laboratory at Ghent University, and prototyped through imec’s silicon photonics technology platform iSiPP50G, and has been implemented using advanced optical packaging approaches developed at the Tyndall National Institute in Ireland. The system has then been integrated into a handheld device and validated for human use by Medtronic.

  A clinical feasibility study at the Georges Pompidou European Hospital in Paris has collected a substantial clinical dataset, both from healthy subjects as well as from patients with cardiovascular conditions. The quality of the device readings was found to be very good and adequate measurement results could be obtained in all subjects. Also, the measurement data and variability within sessions were in line with data and variability acquired by reference techniques. A full dataset is now available and in-depth analysis will be performed both at INSERM and at the biomedical engineering department of Ghent University with the support of Medtronic. Moreover, further clinical feasibility studies are planned in the Academic Hospital of Maastricht (The Netherlands).

  “The CARDIS device was well accepted by all patients, and it was considered useful and well tolerated,” states Dr. Pierre Boutouyrie, the cardiologist in charge of the feasibility study. “Feasibility of signal acquisition is excellent since a useful signal was acquired in 100% of the patients. Tolerance was excellent too, the time to get useful signals was less than 10 min, and patients barely noticed that a measurement was performed.”

  Roel Baets, head of the Photonics Research Group (imec/UGent), concludes: “Silicon photonics is a powerful technology that combines the unique sensing capabilities of photonics with the low-cost and miniaturization capabilities of silicon semiconductor technology. It’s exciting to know that our silicon photonic chip and prototype medical device hold the promise to change the lives of so many patients with cardiovascular diseases.”

  In a next step, a small series of the device will be produced to perform a clinical feasibility study on a larger group of patients and over a longer period of time. If this feasibility study demonstrates the ability of the technology to detect cardiovascular diseases at an early stage, high volume production can be initiated. One of the benefits of the silicon photonics technology is that at high volumes, the chip can be produced at low cost.

5c3e8d039361d-thumb.png

本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 欧美一级免费看| 色五月五月丁香亚洲综合网| 嫩草香味在线观看6080| 亚洲av无码第一区二区三区| 精品丝袜国产自在线拍亚洲| 国产熟女乱子视频正在播放 | 久久精品中文字幕| 污视频网站在线观看| 四虎在线精品观看免费| 久久五月天婷婷| 在线看中文字幕| 中文字幕一区精品| 曰批免费视频试看天天视频下| 国产精品俺来也在线观看 | 久久国产精品二国产精品| 欧美色视频在线| 动漫无遮挡在线观看| 久久波多野结衣| 在线免费观看h| 一级毛片成人免费看免费不卡| 日韩国产中文字幕| 亚洲欧洲综合在线| 精品97国产免费人成视频 | 国产在亚洲线视频观看| 88av视频在线观看| 女同恋のレズビアンbd在线| 久久99国产精品久久99果冻传媒| 福利视频导航大全| 国产伦理一区二区| jizzjizz之xxxx18| 在线观看国产成人av片| 中国嫩模一级毛片| 日本精品视频一区二区| 亚洲伦理一区二区| 波多野结衣中文丝袜字幕| 区二区三区四区免费视频| 金莲你下面好紧夹得我好爽| 国产精品一区久久| 97精品人妻系列无码人妻| 娇小性色xxxxx中文| 久久91综合国产91久久精品|