《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 一種分段檢測器集合生成算法的研究與實現
一種分段檢測器集合生成算法的研究與實現
來源:微型機與應用2012年第15期
張小梅
(蘭州資源環境職業技術學院 信息管理系,甘肅 蘭州 730021)
摘要: 目前大多數入侵檢測算法的研究均用于提高系統檢測的準確率和對非法抗原的覆蓋率,缺乏對提高算法檢測速度的研究。針對這一問題,提出一種新的基于否定選擇的檢測器生成算法,利用分段的方法,先將候選檢測器集合的大小利用求解遞歸公式計算出來,再用求解序號隨機生成檢測器。實驗表明,該算法的時間效率得到顯著提高,并具有實際的工程應用價值。
Abstract:
Key words :

摘  要: 目前大多數入侵檢測算法的研究均用于提高系統檢測的準確率和對非法抗原的覆蓋率,缺乏對提高算法檢測速度的研究。針對這一問題,提出一種新的基于否定選擇檢測器生成算法,利用分段的方法,先將候選檢測器集合的大小利用求解遞歸公式計算出來,再用求解序號隨機生成檢測器。實驗表明,該算法的時間效率得到顯著提高,并具有實際的工程應用價值。
關鍵詞: 否定選擇;檢測器;遞歸;模式匹配

 陰性選擇算法是Forrest等人研究出來的應用于計算機安全防護的檢測算法[1],其用于故障檢測最大的優勢是用有限數量的檢測器檢測無限種類的故障[2-5]。但這些算法都要檢查抗原中長度超過匹配閾值的所有子串是否在檢測器中出現,在都未出現的情況下,才能夠判斷抗原合法,由此導致檢測效率較低。國內的一些否定選擇算法,如參考文獻[6-7]的研究也主要用于這一方面,缺乏對否定選擇算法檢測效率的研究。
 本文深入研究了傳統否定算法的缺點及其產生的原因,提出了一種新的分段選擇檢測器生成算法并加以實現,克服了現有方法的不足。



 



  該算法的檢測準確率高于90%,雖然未達到預先設定的95%的檢測率(這是由于“孔洞”[2]問題導致的),但是已經滿足了故障在線檢測問題的需求。而且,該算法在生成檢測器集合時,所花費的時間為2分42秒,而傳統否定算法則需要5分33秒,可見,改進后的算法的時間性能提高顯著。
論文將檢測器集合的生成分段進行,并對算法的性能進行了驗證。實驗結果表明,本文的檢測器生成算法的匹配速度更快,且能夠有效地提高檢測效率,減小漏報率與誤報率,具有實際的工程應用價值,為進一步研究入侵檢測系統提供了新的算法依據。
參考文獻
[1] ROEKE A J, DEMARA R F. Confidant: Collaborative Objeet Notifieation Framework for Insider Defense using Autonomous Network Transactions. Autonomous Agentsand Multi-Agent System[J]. 2006(1).
[2] FORREST S, PERELSON A, A LLEN L, et al. Self-nonself discrim ination in a computer[C]. In Proceedings IEEE Symposium on Research in Security and Privacy,Los A lan itos,CA,1994,IEEE Computer Society Press.
[3] FORREST S, HOFMEYR S A. Engineering an immune system[J]. Graft,2001(4):5-9.
[4] BALTHROP J, FORREST S, GLICKMAN M R. Revisting L ISYS: parameters and normal behavior[C]. In Procceding of the 2002 Congress on Evolutionary Computation CEC 2002.
[5] FAMER J D, PACKARD N H, PERELSON A S. The immune system, adaptation, and machine learning[J].Physical D,1996.
[6] ZHANG H, WU L F, ZHANG Y S, et al. An algorithm of r-adjustable negative selection algorithm and its simulation analysis[J].  Chinese Journal of Computers, 2005, 28(10):1614-1619(in Chinese with English abstract)
[7] SMITH R, FORREST S. Searching for diverse, cooperative populations with genetic algorithm[J]. Evolutionary Computation, 1993.

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 男人边吃奶边做弄进去免费视频| 51妺嘿嘿午夜福利| 最近中文国语字幕在线播放| 大香伊蕉日本一区二区| 久久精品免费一区二区喷潮 | 亚洲国产欧美目韩成人综合| 精品精品国产高清a毛片| 国产成人福利在线视频播放尤物| 久久午夜伦鲁片免费无码| 淫444kkk| 国产AV无码专区亚洲AV麻豆| 六月婷婷中文字幕| 天天躁夜夜躁狠狠躁2021| 久久久久亚洲av成人无码| 欧美国产综合视频| 伊人久久大香线蕉电影院| 色费女人18女人毛片免费视频| 国产精品亚洲综合网站| a级毛片在线观看| 我和岳乱妇三级高清电影| 久草视频精品在线| 欧美日韩国产另类在线观看| 免费无码不卡视频在线观看 | 亚洲最大黄色网址| 粗大的内捧猛烈进出小视频| 国产乱妇乱子在线播放视频| 亚洲天堂水蜜桃| 国产高清视频在线播放www色| 一个人看的免费高清视频www| 日本a级视频在线播放| 亚洲AV午夜成人片| 欧美日韩亚洲国产| 人妻少妇精品视频一区二区三区| 美女的大胸又黄又www又爽| 国产午夜精品1区2区3福利| 青青草原亚洲视频| 国自产拍在线天天更新91| yellow2019电影在线高清观看| 欧美人体一区二区三区| 伊人不卡久久大香线蕉综合影院| 美腿丝袜中文字幕|