文獻標識碼: A
文章編號: 0258-7998(2012)08-0039-03
直接數字頻率合成器DDFS(Direct Digital Frequency Synthesis,簡稱DDS)是隨著數字信號處理和微電子技術的發展,在20世紀70年代誕生的一種頻率合成技術,具有低成本、低功耗、高分辨率和轉換快速等優點,被廣泛應用于現代雷達、通信儀器儀表、導航設備、制導武器以及電子對抗系統中。DDS輸出信號的3個參量(頻率、相位和幅度)都是由數字控制字決定的,即通過改變相位累加器輸入端的相位字來實現相位控制,從而合成各種調幅、調頻和調相波形,以滿足模擬技術無法實現的需求。
ROM查詢表用來實現相幅轉換,是DDS最關鍵的部分,查詢表的規模和字長決定了DDS輸出波形的質量。高質量的輸出波形需要高精度、大規模的查詢表,使電路實現變得復雜。為此人們提出了一些改進查詢表的方法,可以分為三類:ROM查詢表壓縮算法[1]、角度旋轉算法[2]和多項式逼近法[3]。
本文提出了一種優化ROM查詢表的多通道數據流直接數字頻率合成器,多通道數據流模塊用來選擇粗振幅或者好的振幅作為DDS的輸出。
1 DDS結構
圖2是基于ROM查詢表的MUX-DDS結構,其目的是利用ROM查詢表降低高頻電路的復雜度并獲得1.2 GHz的頻率。本設計的目標是獲得良好的諧波性能,并提高頻率,為了有良好的同步性,采用ROM查詢表的方法優化工作頻率。
ROM查詢表的大小與DDS的頻譜純度成正比,而增大ROM,又會使系統功耗增大,是影響芯片的重要因素,系統級的分析需要達到10 bit精度以及良好的INL和DNL。芯片的面積和功耗也是設計時需要考慮的因素。
當時鐘頻率很高時,為了使DDS達到合適的頻率,通常采用全相位累加器。但是由于添加操作所導致的延遲,全相位累加器無法完成在一個單獨的時鐘周期內進行添加操作。每一個新的頻率輸入字進入流水線結構電路,電路由D觸發器(D-flip-flops)和延遲部分組成。這種結構可以使累加器速度增加M倍(M為累加器的流水級數)。本設計采用四階流水累加器,每階8 bit,如圖3所示。與實施分段的非線性DAC方法[4]相比,可以顯著提高工作頻率。
2 ROM查詢表方案
按4:1集成的多通道數據流構成的 MUX-DDS 能夠為用戶提供4倍輸入的性能,優于按式(2)計算出的有效采樣頻率:
其中fc是系統時鐘頻率。由于作為輸入的多通道數據不可編程,所有4 個端口要用于數模轉換器(DAC)的正常工作。為確保數字系統的有效性,在其中設置了一組集成ROM。由于正弦函數的對稱性,ROM中只需存儲1/4周期,即第一象限的正弦幅度信息,通過符號的設置就可以恢復整個周期的數據。由于ROM的規模與相位分辨率之間為指數關系,隨著輸出分辨率的增加,系統的尺寸隨之劇增。因此,輸入到相位幅度轉換器的相位值,一般只截取高M位,使相位幅度轉換器的復雜度也相應降低。但是這樣的截斷帶來了另一個問題,就是合成的波形中出現周期性的幅度誤差,導致DDS的輸出頻譜中產生雜散噪聲,在設計中需要考慮這種噪聲對芯片性能的影響。
3 芯片實現與測試結果
本設計使用1-poly、8-metal的0.13 μm工藝,芯片面積為0.35 mm×0.61 mm(核心部分)。芯片由數字電路、帶隙基準源和DAC模塊三部分組成。DAC模塊核心部分與數字電路分開布局,以避免電流源與數字信號產生耦合。本芯片的系統時鐘由時鐘驅動程序放大,利用先進的EDA軟件設計,使時鐘精度高,芯片中金屬線導致的延遲低于50 ps。
當采用1.2 V單電源供電、負載電阻為100 Ω時,MUX-DDS可獲得最大單端模擬輸出電壓為0.5 V,芯片功耗為38 mW。電源電壓范圍在0.9 V~1.5 V,工作頻率達到1.2 GHz。圖4、圖5分別為輸入時鐘頻率為1.2 GHz、輸出頻率分別為199.5 MHz、19.95 MHz時的頻譜。可以看到無雜散動態范圍(SFDR)最高為52 dBc。
本文設計了工作電壓1.2 V、10 bit精度、1.2 GHz、基于CMOS工藝的多通道數據流直接數字頻率合成器,提出了一種優化ROM查詢表,采用多通道數據結構,很好地改進了合成器的工作頻率和頻譜純度。最高工作頻率在室溫時為1.2 GHz,SFDR為52 dBc。本設計在臺積電0.13 μm CMOS工藝平臺實現,芯片核心部分面積為0.214 mm2,1.2 V電壓工作時的功耗低于50 mW。如表1所示,與其他文獻所設計的DDS相比,本設計具有更好的頻譜純度和更高的工作頻率。
參考文獻
[1] TAN L K,ROTH E W,YEE G E,et al.An 800 MHz quadrature digital synthesizer with ECL-compatible output drivers in 0.8 micron CMOS[J].IEEE Journal of Solid-State Circuits,1995,30(12):1463-1473.
[2] MADISETTI A,KWENTUS A Y,WILLSON A N.A 100 MHz,16 bit,direct digital frequency synthesizer with a 100 dBc spurious-free dynamic range[J].IEEE Journal of Solid-State Circuits,Aug.1999,34(8):1034-1043.
[3] BELLAOUAR A,O’BRECHT M S,FAHIM A M,et al. Low power direct digital frequency synthesis for wireless communications[J].IEEE Journal of Solid-State Circuits,Mar.2000,35(3):385-390.
[4] Yuan Ling,Ni Weining,Hao Zhikun,et al.A high speed direct digital frequency synthesizer realized by a segmented nonlinear DAC[J].Journal of Semiconductors,2009,30(9):66-69.
[5] Cao Xiaodong,Ni Weining,Yuan Ling,et al.A compact direct digital frequency synthesizer for the rubidium atomic frequency standard[J].Journal of Semiconductors,2008,29(9):1723-1728.
[6] MCEWAN A,COLLINS S.Direct digital frequency synthesis by analog interpolation[J].IEEE Transaction Circuits Syst Ⅱ,2006,53(11):1294-1298.