《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于有限記憶、概率學習的雙時間尺度切片資源分配方法
基于有限記憶、概率學習的雙時間尺度切片資源分配方法
電子技術應用
邵鋒1,孫君1,2
1.南京郵電大學 通信與信息工程學院;2.江蘇省無線通信重點實驗室
摘要: 網絡切片是使網絡能夠滿足不同垂直領域的不同服務需求的關鍵要素,為解決網絡中切片類型動態變化的問題,提出了一種聯邦-多智能體強化學習雙時間尺度資源分配(F-MALML)算法。大時間尺度下,通過有限記憶學習算法為每個基站分配資源;小時間尺度內各基站使用F-MALML算法進一步為切片中的用戶動態分配資源。引入了一種概率學習機制,根據前一時隙的分配結果和網絡實際狀態,動態調整每個時間尺度的分配策略。仿真結果表明,所提算法相比于其他兩種基準算法在新增切片的切片滿意度及系統頻譜效率方面都有較大提升,且表現出更好的穩定性。
中圖分類號:TN929.5 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.246123
中文引用格式: 邵鋒,孫君. 基于有限記憶、概率學習的雙時間尺度切片資源分配方法[J]. 電子技術應用,2025,51(3):17-24.
英文引用格式: Shao Feng,Sun Jun. Dual time scale network slice resource allocation method based on limited memory and probability learning[J]. Application of Electronic Technique,2025,51(3):17-24.
Dual time scale network slice resource allocation method based on limited memory and probability learning
Shao Feng1,Sun Jun1,2
1.College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications; 2.Jiangsu Key Laboratory of Wireless Communications
Abstract: Network slicing is crucial for enabling networks to meet the diverse service demands of various verticals. To address the issue of dynamic changes in slice types, a Federated Multi-Agent Reinforcement Learning (F-MALML) algorithm with dualtime scale resource allocation is proposed. At the large time scale, a finite memory learning algorithm allocates resources to each base station. At the small time scale, each base station uses F-MALML to dynamically allocate resources to users. A probabilistic learning mechanism is introduced to adjust the allocation strategy based on previous results and the current network state. Simulation results show that the proposed algorithm achieves significant improvements in slice satisfaction for newly added slices and system spectral efficiency compared to the two benchmark algorithms, while demonstrating better stability.
Key words : network slicing;resource allocation;dual time scale;deep reinforcement learning;slicing satisfaction

引言

5G-A和6G移動網絡將帶來增強的網絡能力和性能,為不同的行業和個人提供各種用例[1]。不同的應用程序在帶寬、時延、能源效率、移動性等方面有不同甚至相互矛盾的要求,而網絡切片技術可以有效地解決這一需求。網絡切片通常包括接入網切片和核心網切片,對無線接入網(Radio Access Network,RAN)來說,向用戶分配無線電資源是一項極其復雜的操作,通常面臨著資源稀缺和異構服務質量(QoS)的問題[2]。因此,如何將通信資源以最佳方式分配到切片和用戶成為關鍵問題。Zangooei 等人比較綜合地調研了在RAN切片中處理資源分配問題最先進的強化學習(Reinforcement Learning,RL)方法,并且給出了RL方法在網絡切片中可能存在的問題以及解決方案[3]。Hua等人針對最大化網絡切片中的系統頻譜效率(Spectral Efficiency,SE)、系統效用等參數做出了研究[4-7]。Filali等人針對服務水平協議(Service Level Agreement,SLA)滿意度以及資源塊(Resource Block,RB)分配效率、尋求最優的RB分配策略問題做出了研究[8-11]。新興的6G網絡預計將為異構需求提供更多的服務,這是由許多垂直行業創建的[12],因此網絡切片的類型更加多樣,粒度需要更加精細,且可能發生動態變化。基于上述挑戰,本文針對多基站多切片、切片類型動態變化場景下的資源分配問題做出了研究,提出了一種更加智能化的算法,并通過仿真驗證了算法的性能。


本文詳細內容請下載:

http://m.xxav2194.com/resource/share/2000006353


作者信息:

邵鋒1,孫君1,2

(1.南京郵電大學 通信與信息工程學院,江蘇 南京 210003;

2.江蘇省無線通信重點實驗室,江蘇 南京 210003)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 夜先锋av资源网站| 久久国产精品二国产精品| 久久99蜜桃精品久久久久小说| 老司机67194免费观看| 最近新免费韩国视频资源| 国产亚洲一区二区在线观看| 一二三四在线观看高清| 欧美激情综合色综合啪啪五月| 国产孕妇做受视频在线观看| 一级毛片视频播放| 欧美日韩国产精品综合| 国产伦精品一区二区| 一本色道久久综合网| 欧美日韩电影在线播放网| 口工全彩无遮挡3d漫画在线| 91抖音在线观看| 日本免费高清一本视频| 免费夜色污私人影院在线观看 | 国产剧情丝袜在线观看| 《调教办公室》在线观看| 欧美在线观看第一页| 国产va免费精品| 99re在线免费视频| 日本精品www色| 人妻少妇精品视频一区二区三区| 日本人强jizzjizz| 忘忧草视频www| 亚洲乱人伦精品图片| 综合无码一区二区三区| 国产精品永久免费视频| 中文成人无字幕乱码精品区| 欧美高清在线视频在线99精品 | 国产区精品视频| 高清国产激情视频在线观看| 成年女人a毛片免费视频| 亚洲精品中文字幕乱码三区| 高清成人爽a毛片免费网站| 天天干天天天天| 久久成人国产精品一区二区| 狠狠色欧美亚洲综合色黑a| 国产在线观看一区二区三区|