中文引用格式: 邵鋒,孫君. 基于有限記憶、概率學習的雙時間尺度切片資源分配方法[J]. 電子技術應用,2025,51(3):17-24.
英文引用格式: Shao Feng,Sun Jun. Dual time scale network slice resource allocation method based on limited memory and probability learning[J]. Application of Electronic Technique,2025,51(3):17-24.
引言
5G-A和6G移動網絡將帶來增強的網絡能力和性能,為不同的行業和個人提供各種用例[1]。不同的應用程序在帶寬、時延、能源效率、移動性等方面有不同甚至相互矛盾的要求,而網絡切片技術可以有效地解決這一需求。網絡切片通常包括接入網切片和核心網切片,對無線接入網(Radio Access Network,RAN)來說,向用戶分配無線電資源是一項極其復雜的操作,通常面臨著資源稀缺和異構服務質量(QoS)的問題[2]。因此,如何將通信資源以最佳方式分配到切片和用戶成為關鍵問題。Zangooei 等人比較綜合地調研了在RAN切片中處理資源分配問題最先進的強化學習(Reinforcement Learning,RL)方法,并且給出了RL方法在網絡切片中可能存在的問題以及解決方案[3]。Hua等人針對最大化網絡切片中的系統頻譜效率(Spectral Efficiency,SE)、系統效用等參數做出了研究[4-7]。Filali等人針對服務水平協議(Service Level Agreement,SLA)滿意度以及資源塊(Resource Block,RB)分配效率、尋求最優的RB分配策略問題做出了研究[8-11]。新興的6G網絡預計將為異構需求提供更多的服務,這是由許多垂直行業創建的[12],因此網絡切片的類型更加多樣,粒度需要更加精細,且可能發生動態變化。基于上述挑戰,本文針對多基站多切片、切片類型動態變化場景下的資源分配問題做出了研究,提出了一種更加智能化的算法,并通過仿真驗證了算法的性能。
本文詳細內容請下載:
http://m.xxav2194.com/resource/share/2000006353
作者信息:
邵鋒1,孫君1,2
(1.南京郵電大學 通信與信息工程學院,江蘇 南京 210003;
2.江蘇省無線通信重點實驗室,江蘇 南京 210003)