《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于遺傳算法和LightGBM的網絡安全態勢感知模型
基于遺傳算法和LightGBM的網絡安全態勢感知模型
網絡安全與數據治理
胡銳,徐芳,熊郁峰,熊洲宇,陳敏
江西省煙草公司吉安市公司
摘要: 針對傳統煙草工業系統中的網絡流量異常檢測方法存在的特征間聯系和上下文信息丟失等問題,提出了一種基于遺傳算法改進的LightGBM模型,此模型能夠使得模型避免陷入局部最優情況。首先通過計算構建樹模型對數據降維,從高維數據中挖掘出對于檢測效果影響重要的關鍵特征信息,并使用提出的模型對這些關鍵特征信息進行分析。為了評估模型的有效性與優越性,使用準確率和損失進行模型評價,并與其他網絡流量異常檢測模型Tabular model、TabNet、LightGBM、XGBoost進行對比。使用公開數據集 CIC.IDS.2018 進行實驗分析。結果表明,在高特征的網絡安全態勢感知下,多分類和二分類的識別準確率分別達99.43%和99.87%,在低特征情況下,多分類和二分類的識別準確率分別達98.73%和99.39%,具有較高準確率以及良好的靈活性和魯棒性。
中圖分類號:TP393.0文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2024.03.003
引用格式:胡銳,徐芳,熊郁峰,等.基于遺傳算法和LightGBM的網絡安全態勢感知模型[J].網絡安全與數據治理,2024,43(3):14-20.
Network traffic anomaly identification and detection based on genetic algorithm and LightGBM
Hu Rui,Xu Fang,Xiong Yufeng,Xiong Zhouyu,Chen Min
Jiangxi Tobacco Company Ji′an City Company
Abstract: This study proposes an improved LightGBM model based on genetic algorithm to avoid problems such as the connection between features and the loss of contextual information in the network traffic anomaly detection method in traditional tobacco industry systems. This model can avoid the model falling into local optimal situations. First, the data dimensionality is reduced by calculating and constructing a tree model, and key feature information that is important to the detection effect is mined from high dimensional data, and the proposed model is used to analyze this key feature information. To evaluate the effectiveness and superiority of the model, this paper uses accuracy and loss to evaluate the model and compares it with other network traffic anomaly detection models Tabular model, TabNet, LightGBM, and XGBoost. Experimental analysis was conducted using the public data set CIC.IDS.2018. The results show that under high-feature network security situational awareness, the recognition accuracy of multi class and two-class classification reaches 99.43% and 99.87% respectively. In the case of low features, the multi-class recognition accuracy is 99.43%. The recognition accuracy of classification and binary classification reaches 98.73% and 99.39% respectively, which has high accuracy and good flexibility and robustness.
Key words : anomaly detection; machine learning; genetic algorithm; LightGBM

引言

網絡給諸多行業發展帶來了便利,但因網絡而導致的問題也日漸顯著,相繼出現了因網絡信息保護不利而導致的信息泄露、網絡詐騙、網絡監聽等事件[1]。人工智能技術是網絡安全技術難題的重要解決手段,越來越多的研究著重于基于人工智能構建網絡態勢感知模型[2]。應對網絡攻擊的研究成為熱門[3-4],研究人員逐漸使用網絡安全態勢感知代替原有的被動防御措施,能夠提前預測和發現潛藏的網絡攻擊。原始的網絡異常流量檢測模型中通常使用統計分析[5]等方法,由于是通過已有信息來進行防范,往往因為預測效果差而達不到防范新型網絡攻擊的效果。


本文詳細內容請下載:

http://m.xxav2194.com/resource/share/2000005929


作者信息:

胡銳,徐芳,熊郁峰,熊洲宇,陳敏

江西省煙草公司吉安市公司,江西吉安343009


雜志訂閱.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 久久精品国产9久久综合| 免费国产成人高清视频网站| 91精品国产色综合久久不| 精品日产一区二区三区| 天天躁日日躁狠狠躁欧美老妇| 九九视频九九热| 热99re久久精品精品免费 | 欧美另类videovideosex| 国产日本在线观看| www.sifangpian| 日本午夜小视频| 亚洲国产欧美日韩| 男男黄GAY片免费网站WWW| 国产亚洲成AV人片在线观看| 一级全免费视频播放| 日韩激情视频在线| 亚洲欧洲日产国码www| 青青草原亚洲视频| 国产精品沙发午睡系列999| 一级黄色在线视频| 日本簧片在线观看| 亚洲伊人色欲综合网| 狠狠综合久久av一区二区| 国产一区二区在线视频| 日本在线xxxx| 国美女福利视频午夜精品| 三上悠亚精品二区在线观看| 日本道色综合久久影院| 亚洲免费闲人蜜桃| 狠狠色丁香九九婷婷综合五月| 啊灬啊灬啊灬快灬性| 香蕉视频a级片| 国产激情精品一区二区三区| 97视频免费观看2区| 婷婷国产偷v国产偷v亚洲| 久久中文精品无码中文字幕| 狠狠躁日日躁夜夜躁2020| 国产99在线a视频| 麻豆国产精品一二三在线观看| 国产精品视频一区二区三区四| xxxx性开放xxxx|