《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 融合電影流行性與觀影時間的協同過濾算法
融合電影流行性與觀影時間的協同過濾算法
網絡安全與數據治理
錢澤俊,劉潤然
(杭州師范大學阿里巴巴商學院,浙江杭州311121)
摘要: 相似度評估作為協同過濾推薦算法的核心,盡管研究人員對其不斷改進,卻仍難以在各個維度上充分利用評價數據。針對這一挑戰,首先以用戶與電影之間的相互影響方式作為切入點,對二者間可能存在的自洽邏輯進行探究,提出了電影流行度計算公式用于對電影進行加權;接著以用戶觀影時間作為研究對象,探究用戶觀影喜好的轉變與觀影時間順序之間的聯系,并結合肯德爾相關系數提出了觀影順序一致性度量公式;最后將以上研究內容與傳統相似度算法融合,并基于Netflix Prize數據集與豆瓣電影評價數據集對改進后的相似度算法進行驗證。實驗結果表明改進后的相似度算法擁有更高的推薦準確度。
中圖分類號:TP3913文獻標識碼:ADOI: 10.19358/j.issn.2097-1788.2024.02.009
引用格式:錢澤俊,劉潤然.融合電影流行性與觀影時間的協同過濾算法[J].網絡安全與數據治理,2024,43(2):54-63.
Collaborative filtering algorithm combining movie popularity and viewing time
Qian Zejun,Liu Runran
(Alibaba Business School, Hangzhou Normal University, Hangzhou 311121, China)
Abstract: As the core of the collaborative filtering recommendation algorithm, similarity evaluation is still difficult to fully utilize evaluation data in all dimensions, despite researchers constantly improving it. In this paper, aiming at this challenge, the mutual influence between users and movies is taken as the starting point, the possible self consistent logic between the two is explored, and a formula called Movie Popularity Weight (MPW) calculation formula is proposed to calculate the weight of movies. Then, taking the viewing time of users as the research object, the relationship between the change of viewing preference and the viewing time sequence of users is explored, and combined with the theory of Kendall correlation coefficient, a formula called Consistency in Viewing Sequence (CVS) calculation formula is proposed. Finally, the traditional similarity algorithm is improved by using the above research content, and the improved similarity algorithm is validated by using two datasets, one is the Netflix Prize dataset, while the other one is built based on publicly available data from Douban.com called Douban Movie K5 dataset. The experimental result shows that the improved similarity algorithm has higher recommendation accuracy.
Key words : recommendation algorithm; collaborative filtering; similarity algorithm; movie popularity; viewing time

引言

推薦系統[1]是人們借助計算機系統的高計算能力,為解決用戶在面對信息過載時獲取有效信息的效率低下問題而設計的輔助系統,其準確性極大程度上依賴于所采用的推薦策略。在推薦系統的眾多策略中,“協同過濾”是其中廣泛使用的一種策略[2],它以用戶的興趣偏好作為推薦依據,并假設每個用戶未來的行為更有可能與該用戶過去的行為類似。因此,以協同過濾策略為基礎的推薦系統,會基于與目標用戶相似的其他用戶對一些物品的評價來向目標用戶推薦物品[3],具有良好的可解釋性。協同過濾策略的關鍵步驟是計算用戶間的相似度,但由于傳統的相似度算法很容易受到冷啟動、數據稀疏性、時間衰變等問題的影響[4],因此許多研究人員對此進行改進并提出了一些新的相似性度量算法。在研究物品的權值計算方面,Leskovec[5]等人對Pearson相關系數算法的改進考慮到評價的分布具有長尾特征,即隨著時間的流逝,部分受歡迎的物品將會得到更多用戶的評價,而一些不受歡迎的物品,它們得到的評價數量則一直非常有限。


作者信息:

錢澤俊,劉潤然

(杭州師范大學阿里巴巴商學院,浙江杭州311121)


文章下載地址:http://m.xxav2194.com/resource/share/2000005903


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 色天天综合色天天碰| chinese体育生gayxxxxhd| 欧美日韩一区二区三区在线视频| 国产一区二区小早川怜子| 亚洲伊人久久大香线蕉结合 | 日韩美女在线观看一区| 国产国产精品人在线视| 99久久综合精品国产| 日产2021乱码一区| 国产AV午夜精品一区二区三区| juliaann大战七个黑人| 日本高清电影免费播放| 又爽又黄又无遮挡的视频在线观看 | 欧美日韩成人午夜免费| 午夜亚洲WWW湿好大| 韩国三级黄色片| 国产精品15p| 98精品国产综合久久| 成人亚洲国产精品久久| 久久文学网辣文小说| 欧美怡红院免费全部视频| 免费A级毛片无码A∨| 色噜噜狠狠一区二区三区果冻| 国产欧美日韩综合精品一区二区| 99久久99久久免费精品小说| 少妇无码太爽了在线播放| 久久久久久人妻一区精品| 极品美女一级毛片| 亚洲欧美另类专区| 男人和女人做爽爽视频| 啊灬啊灬啊灬快灬深久久| 青青青青青国产免费手机看视频| 国产精品中文字幕在线| 99久久国产免费福利| 嫩b人妻精品一区二区三区| 久久99亚洲网美利坚合众国| 旧里番洗濯屋1一2集无删减| 亚洲国产欧美日韩一区二区三区| 狠狠久久永久免费观看| 再深点灬舒服灬快h视频| 翁虹三级在线伦理电影|