《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于ADE-ABiGRU的物聯網安全態勢預測
基于ADE-ABiGRU的物聯網安全態勢預測
網絡安全與數據治理
彭興維1,袁凌云1,2
1 云南師范大學信息學院,云南昆明650500; 2 云南師范大學民族教育信息化教育部重點實驗室,云南昆明650500
摘要: 針對物聯網安全態勢預測的復雜性和多變性,提出一種基于ADEABiGRU的物聯網安全態勢預測模型。該模型融合了雙向門控循環單元、多頭注意力機制和殘差結構,并經由自適應差分進化算法調優,增強了對復雜時序依賴性的捕捉和對數據的多維度分析能力。通過改進自適應差分進化算法的自適應機制,充分考慮時序數據特征,以提升全局搜索效率和局部逼近精度。在ToN_IoT數據集上的實驗結果表明,與傳統算法相比,該模型在MAPE、R2和MSE上均表現出色,展現出更高的預測準確性和穩定性。
中圖分類號:TP393.08文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2023.12.008
引用格式:彭興維,袁凌云.基于ADE ABiGRU的物聯網安全態勢預測[J].網絡安全與數據治理,2023,42(12):48-53.
Internet of Things security posture prediction based on ADE ABiGRU
Peng Xingwei 1,Yuan Lingyun 1,2
1 College of Information Science and Technology, Yunnan Normal University, Kunming 650500, China;2 Key Laboratory of Educational Information for Nationalities, Ministry of Education, Yunnan Normal University, Kunming 650500, China
Abstract: Addressing the complexity and variability in IoT security situation prediction, this paper proposes an ADEABiGRUbased IoT security posture prediction model. The model merges bidirectional gated recurrent units, multihead attention mechanisms, and residual structures, optimized through adaptive differential evolution to enhance its ability to capture complex temporal dependencies and analyze data across multiple dimensions. Refinement of the adaptive mechanism within the adaptive differential evolution algorithm ensures thorough consideration of temporal data characteristics, improving global search efficiency and local approximation accuracy. Experimental results on the ToN_IoT dataset show that the model outperforms traditional algorithms in terms of MAPE, R2, and MSE, demonstrating higher predictive accuracy and stability.
Key words : network security; posture prediction; bidirectional gated recurrent unit; multihead attention mechanism; differential evolution

引言

物聯網是由眾多智能設備與網絡連接組成的綜合網絡體系,旨在實現設備間的智能互聯和數據共享。隨著物聯網設備的普及,安全威脅亦在增加[1]。相對于傳統的安全措施,網絡安全態勢感知作為一種新方法,為網絡行為的宏觀理解和意圖辨識提供了創新視角,進而為網絡安全決策提供了有力支撐[2]。近年來,深度學習算法在多個領域均展現出了卓越的應用潛力[3]。許多研究者對深度學習算法進行優化,提升其預測精準度。Wang等人[4]提出了一種基于長短期記憶網絡(Long ShortTerm Memory network, LSTM)和門控循環單元(Gated Recurrent Unit, GRU)的雙層模型預測算法。為了利用長期數據提升預測準確度,Zeng等人[5]在此基礎上提出了一種結合擴展平穩小波變換和嵌套LSTM的預測模型。為增強物聯網安全性,Tan等人[6]提出了一種基于HoneyNet的方法,通過該方法成功監控對手攻擊行為。Chen[7]通過結合模擬退火算法和混合層次遺傳算法優化徑向基函數(Radial Basis Function, RBF)神經網絡,為網絡安全態勢預測提供了一種新的解決思路。曹波等人[8]引入了一種融合時域卷積神經網絡(Temporal Convolutional Network, TCN)和GRU的預測策略進一步提高預測精確度。


作者信息

彭興維1,袁凌云1,2

(1 云南師范大學信息學院,云南昆明650500;

2 云南師范大學民族教育信息化教育部重點實驗室,云南昆明650500)


文章下載地址:http://m.xxav2194.com/resource/share/2000005876


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 香蕉视频污网站| 一级毛片视频免费| 波多野结衣中文字幕视频| 国产一在线观看| 亚洲国产婷婷综合在线精品| 色94色欧美一区| 国产精品亚洲va在线观看| yw在线观看成人免费| 欧美视频第二页| 国产欧美日韩在线观看一区二区| 一区二区精品在线| 日韩一区二三区国产好的精华液| 亚洲第一页综合图片自拍| 美女把尿口扒开给男人桶视频 | 亚洲欧美日韩高清一区二区三区 | 西西人体www44rt大胆高清| 国产网站在线免费观看| 一区二区三区欧美在线| 日本大胆欧美人术艺术| 亚洲免费小视频| 波多野结衣护士系列播放| 午夜免费福利影院| 西西人体欧美大胆在线| 国产男女免费完整视频| 久久91精品国产91久久| 欧美喷潮久久久XXXXx| 国产乱子伦手机在线| 一级日本黄色片| 日韩中文字幕a| 亚洲国产精品久久久久久| 男人操心女人的视频| 啊轻点灬大ji巴太粗太长了电影| 国产精选之刘婷野战| 国产精品电影一区二区| avtt天堂网手机版亚洲| 幻女free性俄罗斯第一次摘花| 亚洲成a人片在线观看天堂无码 | 男人j进女人p一进一出视频| 四虎永久网址在线观看| 高清欧美一级在线观看| 国产福利免费视频|