《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于深度自編碼器的智能電網竊電網絡攻擊異常檢測
基于深度自編碼器的智能電網竊電網絡攻擊異常檢測
電子技術應用
黃燕1,李金燦1,楊霞琴2,李佩2,李梓3
1.廣西電網有限責任公司,廣西 南寧 530023;2.廣西電網有限責任公司南寧供電局,廣西 南寧 530000; 3.廣西電網有限責任公司梧州供電局,廣西 梧州 543002
摘要: 現有AMIs中的異常檢測器存在淺層架構,難以捕獲時間相關性以及電力消耗數據中存在的復雜模式,從而影響檢測性能。提出基于長短期記憶(LSTM)的序列對序列(seq2seq)結構的深度(堆棧)自編碼器。自動編碼器結構的深度有助于捕獲數據的復雜模式,seq2seq LSTM模型可以利用數據的時間序列特性。研究了簡單自編碼器、變分自編碼器和注意自編碼器(AEA)的性能,得出在這3種自編碼器采用seq2seq結構時檢測性能優于全連接結構。仿真結果表明,帶有注意力機制的檢測器(AEA)檢出率和虛警率分別比現有性能最好的檢測器高4%~21%和4%~13%。
中圖分類號:TM28 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234395
中文引用格式: 黃燕,李金燦,楊霞琴,等. 基于深度自編碼器的智能電網竊電網絡攻擊異常檢測[J]. 電子技術應用,2024,50(2):76-82.
英文引用格式: Huang Yan,Li Jincan,Yang Xiaqin,et al. Anomaly detection of smart grid stealing network attacks based on deep autoencoder[J]. Application of Electronic Technique,2024,50(2):76-82.
Anomaly detection of smart grid stealing network attacks based on deep autoencoder
Huang Yan1,Li Jincan1,Yang Xiaqin2,Li Pei2,Li Zi3
1.State Grid Guangxi Power Supply Company,Nanning 530023, China;2.State Grid Nanning Power Supply Company,Nanning 530000, China;3.State Grid Wuzhou Power Supply Company,Wuzhou 543002, China
Abstract: Existing anomaly detectors in AMIs suffer from shallow architectures, which impede their ability to capture temporal correlations and complex patterns in electricity consumption data, thus impact detection performance adversely. A deep (stacked) autoencoder structure based on Long Short-Term Memory (LSTM) with a sequence-to-sequence (seq2seq) configuration is proposed. The depth of the autoencoder architecture is beneficial for capturing complex data patterns, and the seq2seq LSTM model effectively utilizes the temporal sequential characteristics of the data. The performance of simple autoencoders, variational autoencoders, and Attention Enhanced Autoencoders (AEA) was studied, revealing that using the seq2seq structure in these three types of autoencoders results in superior detection performance compared to fully connected architectures. Simulation results demonstrate that the detector with an attention mechanism (AEA) achieves a 4%~21% higher detection rate and a 4%~13% lower false alarm rate compared to the best-performing existing detectors.
Key words : autoencoder;deep machine learning;power stealing;hyperparameter optimization;sequence-to-sequence

引言

電力盜竊不僅會使電網過載,還會對電網的穩定性和效率產生負面影響。因此提出了使用機器學習模型來識別電力盜竊[1-2]。基于機器學習的檢測器包括監督分類器和異常檢測器。監督分類器包括淺層機器學習分類器,如樸素貝葉斯[3]和支持向量機(SVM)[4],還有基于決策樹和SVM的兩步檢測器[5]。雖然上述分類器檢測準確率高,但過于依賴于客戶耗電數據的良性和惡意樣本的可用性,只能檢測到已經訓練過的攻擊類型。


本文詳細內容請下載:

http://m.xxav2194.com/resource/share/2000005859


作者信息:

黃燕1,李金燦1,楊霞琴2,李佩2,李梓3

1.廣西電網有限責任公司,廣西 南寧 530023;2.廣西電網有限責任公司南寧供電局,廣西 南寧 530000; 3.廣西電網有限責任公司梧州供電局,廣西 梧州 543002


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 可以看女生隐私的网站| 欧美亚洲综合视频| 国产成人一区二区三区 | 久久精品国产99国产精品亚洲| 韩国一区二区三区视频| 国产高清视频一区二区| 中文字幕视频在线| 最美情侣中文字幕电影| 国产一级黄毛片| 最色网在线观看| 天天综合色天天综合| 亚洲大尺码专区影院| 里番库全彩本子彩色h琉璃| 国产精品美女久久久久AV福利| 一级毛片a免费播放王色| 日本道精品一区二区三区| 免费黄色一级片| 麻豆69堂免费视频| 好男人www视频| 久久久精品波多野结衣| 欧美人与牲动交a欧美精品| 人妻无码中文字幕| 美女毛片一区二区三区四区| 国产成人涩涩涩视频在线观看| 97久久综合精品久久久综合| 小草视频免费观看| 久久久久亚洲av成人网| 精品国产麻豆免费网站| 国产精品日韩一区二区三区| www.尤物视频| 捏揉舔水插按摩师| 亚洲欧洲无卡二区视頻| 精品久久久中文字幕人妻| 国产精品JIZZ在线观看老狼| a毛片全部播放免费视频完整18| 手机看片福利在线| 久久婷婷是五月综合色狠狠 | 四虎永久在线精品国产免费 | 在线观看www日本免费网站| 一级一黄在线观看视频免费| 新人本田岬847正在播放|