文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.11.006
引用格式:楊理智,張櫨丹,王俊鋒,等.基于機器學習算法的西部方向氣候模式預測訂正研究[J].網絡安全與數據治理,2023,42(11):29-34.
0引言
氣候預測方法有統計學、動力學和動力統計相結合三類方法。統計學方法由于指數因子過多且各因子相互作用過程復雜,難以基于簡單的人工分析把握主要統計要素,因此不確定性較高。動力學方法基于數值預報模式,受初始擾動和大氣可預報性影響,氣候預測技巧有限,特別是青藏高原地區海拔高且地形復雜,氣候動力模式難以精準捕捉氣候過程,從而表現出了明顯偏差[1-2]。動力統計結合方式為現在主流方式,能彌補統計和動力方法各自的不足,明顯提升預測準確度[3-5]。因此,利用統計學方法訂正西部方向氣候模式,以提升預報準確度是值得探索的一個方向。
近年來,大數據分析挖掘技術——機器學習正騰飛發展,也在對數據關鍵信息的提取、識別和預測上取得了巨大成就。充分利用大數據分析挖掘技術,優化傳統統計預測方法,是提升高原地區氣候預測準確度的重要途徑。氣候預測準確性的影響因子眾多,包含不同起報時間的模式場數據以及前期環流特征等,因子數量多、呈現顯著的非線性。機器學習算法能夠挖掘大數據規律,區別于傳統統計方法,它從數據出發進行學習,具有很強的處理非線性問題的能力[6],能夠從地氣系統大數據中發現并挖掘分析相互關聯信號,提升氣候預測技巧[7-8]。
機器學習已經被廣泛應用于氣候預測中,涌現出大量創新創造性成果[9-11]。機器學習方法常與數值模式融合,Gentine等[11]用神經網絡模擬云和對流中熱量、水汽的垂直輸送以及輻射與云和水蒸氣的相互作用,更有效地改進數值模式的模擬性,對氣候模式的發展和預測水平的提高帶來深遠影響。機器學習也被廣泛用于訂正動力模式偏差,Moghim和Bras[12]使用ANN模型對CCSM3的南美洲北部降水進行訂正,效果顯著優于線性回歸模型;Wang等[13-14]用隨機森林、支持向量、貝葉斯模型等工智能模型訂正偏差,從而提高動力模式預測水平。機器學習算法對提升氣候預測業務水平也有極大的貢獻,黃超[15]等采用隨機森林挑選因子、多層前饋神經網絡、支持向量回歸和自然梯度算法建立模型,有效提升了湖南夏季降水的預測能力;鄧居昌等[7]用多種機器學習算法構建廣西月降水量預測統計訂正,結合動力模式方法,極大提升了預測準確率;向波等創造性地將機器學習算法融入多省市的氣候預測業務中,成功優化預測效果。
上述研究在氣候預測中機器學習算法的應用領域做出了較大貢獻,但由于模式表現差、測站少等原因,鮮有研究關注西部方向。因此,本文利用西部方向240個區域站30年觀測數據、國內外主流氣候模式數據、前期環流特征等大數據樣本,基于EOF分解的時間系數,采用信息流算法分析挖掘數據因果特征,運用機器學習算法構建高影響因子集與時間系數的預報模型,以優化模式預報場,最后將模式數據、重構預報數據插值回240個區域站,分析對比模型預報效果,探索基于機器學習算法的氣候模式訂正方法在西部方向的適用性。
本文下載請點擊:基于機器學習算法的西部方向氣候模式預測訂正研究AET-電子技術應用-最豐富的電子設計資源平臺 (chinaaet.com)
作者信息:
楊理智,張櫨丹,王俊鋒,張帥,嚴渝昇
(中國人民解放軍31308部隊,四川成都610031)