《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于自適應超像素的少樣本極化SAR圖像特征增強方法研究
基于自適應超像素的少樣本極化SAR圖像特征增強方法研究
2022年電子技術應用第10期
任吉宏1,2,劉 暢1,2
1.中國科學院 空天信息創新研究院,北京 100190; 2.中國科學院大學,北京 100049
摘要: 有監督的極化合成孔徑雷達(極化SAR)圖像地物分類任務需要像素級人工標注,如何減少其對大量精確標注樣本的依賴是目前的一個研究重點。極化SAR圖像的空間鄰域內存在信息冗余和特征相關性,充分利用空間鄰域信息有助于提升樣本特征的判別性和魯棒性。通過引入基于極化統計HSV顏色特征的自適應超像素聚類算法,提出一種借助鄰域相關性的樣本特征增強方法。實驗結果表明該方法可以在僅有少量標注樣本的條件下提升分類結果的魯棒性和準確率。
中圖分類號: TN958文獻標識碼: ADOI:10.16157/j.issn.0258-7998.222808

中文引用格式: 任吉宏,劉暢. 基于自適應超像素的少樣本極化SAR圖像特征增強方法研究[J].電子技術應用,2022,48(10):144-149.
英文引用格式: Ren Jihong, Liu Chang. An adaptive superpixel-based polarimetric feature enhancement method for polarimetric SAR image classification with limited labeled data[J]. Application of Electronic Technique,2022,48(10):144-149.
An adaptive superpixel-based polarimetric feature enhancement method for polarimetric SAR image classification with limited labeled data
Ren Jihong1,2,Liu Chang1,2
1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The performance of supervised Polarimetric Synthetic Aperture Radar (PolSAR) image terrain classification heavily relies on ground-truth samples, which could be a problem when the sample size is small or few labels are imprecise. Since PolSAR image has spatial and spectral information redundancy, spatial neighborhood information can improve the discriminative and robustness of sample features. In this paper, a polarimetric feature enhancement method is proposed for improving the robustness of data representation. With the help of a statistical polarimetric HSV color space pseudo-color image generation method and an adaptive superpixel clustering algorithm, the enhanced feature of each sample can be obtained from both the original sample feature and its corresponding superpixel. Experiments with the benchmark datasets show that the proposed method can improve the robustness and accuracy of classification results with a small size of ground-truth samples.
Key words : Polarimetric Synthetic Aperture Radar (PolSAR); terrain classification; superpixel; polarimetric feature enhancement

0 引言

    合成孔徑雷達(Synthetic Aperture Radar, SAR)作為一種具有主動微波成像能力的遙感監測手段,可以實現全天時全天候高分辨率持續對地觀測。極化SAR采用多通道多極化的工作模式,可以捕獲地表目標豐富的物理散射特性[1],因此在目標檢測[2]、變化檢測[3]、地物目標分類[4]等SAR圖像解譯任務中發揮重要作用。地物分類作為極化SAR圖像的一項基本解譯任務,可以為農林監測[5]、災害定位[6]、地質勘探[7]等遙感觀測實際應用提供重要判據。

    基于數據驅動的極化SAR圖像地物分類方法包括有監督、無監督和半監督等分類器學習方式。有監督學習借助標注樣本學習特征空間,包括Wishart、支持向量機(Support Vector Machine, SVM)、隨機森林(Random Forests, RF)等分類器。無監督學習根據樣本特征相似性劃分特征空間,其中,H/α分類通過極化統計特征區分典型地物散射類別。針對極化SAR圖像的成像機理,基于極化信息的散射特征可以有效利用物理散射特征實現同質區域聚類[8-10]。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000004978




作者信息:

任吉宏1,2,劉  暢1,2

(1.中國科學院 空天信息創新研究院,北京 100190;

2.中國科學院大學,北京 100049) 




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 老师让我她我爽了好久视频| a毛看片免费观看视频| 欧美激情xxx| 同性女电影三级中文字幕 | 欧美美女毛茸茸| 四虎国产精品永久在线| 亚裔玉videoshd和黑人| 天天综合天天干| 中文字幕日韩一区二区不卡| 杨幂精品国产福利在线| 亚洲色欲色欲www| 美女被免费网站视频九色| 国产手机在线播放| 99久久免费精品高清特色大片| 新梅瓶1一5集在线观看| 亚洲av成人综合网| 毛片高清视频在线看免费观看| 午夜免费不卡毛片完整版| 高潮毛片无遮挡高清免费视频| 国产综合在线观看视频| www.成年人视频| 日本亚洲色大成网站www久久| 亚洲国产日产无码精品| 福利深夜小视频秒拍微拍| 国产亚洲精品无码专区| 日本最新免费网站| 国产视频福利在线| xyx性爽欧美| 成年女人免费碰碰视频| 久久无码人妻一区二区三区| 欧美交换性一区二区三区| 亚洲精品视频在线| 精品一区二区久久| 国产va免费精品高清在线| 黑人极品videos精品欧美裸| 国产精品成人va在线播放| 99热久久这里只精品国产www| 学校触犯×ofthedead| 中文字幕在线播放不卡| 日韩亚洲欧美综合一区二区三区| 亚洲人成色77777|