《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 一種基于網絡表示學習的網絡安全用戶發現方法
一種基于網絡表示學習的網絡安全用戶發現方法
網絡安全與數據治理 2022年 第1期
劉向宇,燕 瑋,孟星妤,侯開茂
(華北計算機系統工程研究所,北京100083)
摘要: 發現社交媒體中的網絡安全用戶對于追蹤網絡安全動態有重要意義,針對這一特定領域用戶的發現,提出了一種新的發現方法。首先利用社交媒體節點間的相互關注關系建立有向關系網絡,然后用網絡表示學習模型Node2vec生成節點的向量表示,并將收集到的網絡安全關鍵字轉化為特征向量,拼接后輸入分類算法進行預測。實驗結果表明,在社交媒體網絡安全數據集上,所提方法的預測準確率優于現有的其他特定領域用戶發現算法。
中圖分類號: TP181
文獻標識碼: A
DOI: 10.20044/j.csdg.2097-1788.2022.01.012
引用格式: 劉向宇,燕瑋,孟星妤,等. 一種基于網絡表示學習的網絡安全用戶發現方法[J].網絡安全與數據治理,2022,41(1):78-82.
A method of finding cyber security user based on network representation learning
Liu Xiangyu,Yan Wei, Meng Xingyu,Hou Kaimao
(National Computer System Engineering Research Institute of China,Beijing 100083,China)
Abstract: Finding cyber security users in social media is quite important to track network security trends. This paper proposes a method to find users of specific areas. Firstly, a directed network is established by using the mutual attention relationship between social media nodes. Then network representation learning model Node2vec is used to generate the feature vectors of social network nodes. We change the key words collected from blogs and profiles into cyber security feature vectors . Finally, the concatenated two vectors are input into binary classifier to find the cyber security users. Experimental results show that the prediction precision of the proposed method is better than other existing domain specific user discovery algorithms on social media network security data sets.
Key words : cyber security;Node2vec;social media;binary classification;self training

0 引言

發現社交媒體中的網絡安全用戶可以有效追蹤網絡安全動態,對網絡安全防護具有重要意義。實際上,識別社交網絡中的網絡安全用戶也是對社交網絡節點進行分類發現。

現實生活中,人們傾向于與類似的人發展社會關系,所以社交用戶的好友會分享更多的屬性,如種族、民族、宗教和職業——這就是所謂的“同質性原則”[1]。這導致了在Twitter上相互關注的人通常有共同的話題興趣,可以通過相互關注關系來推斷社交媒體用戶的屬性。另外,社交用戶還具備其他可以獲取的數據,如社交文本和用戶資料,這些資料構成新的用戶屬性,也有助于推斷用戶的興趣或者職業,與用戶的社交關系形成互補。

當前已經有大量的用戶分類工作都是基于網絡拓撲結構進行節點的分類。比如,網絡表示學習方法直接對網絡結構特征進行學習提取,將得到的特征用于分類可以取得不錯的效果。然而,現有的網絡表示學習方法缺乏對社交文本和社交基本資料特征的學習,極大地限制了其分類效果。相對于單純利用社交網絡結構對用戶進行分類,當前主流的圖神經網絡算法創新性地融入了網絡節點的其他屬性特征,獲得了更高的分類準確率。本文針對網絡表示學習方法缺乏社交文本特征的問題,通過改進Node2vec[2]方法,使其融合多種網絡屬性特征而更加有利于分類,從而識別出社交媒體中的網絡安全用戶。

本文的創新性工作包括:

(1)利用網絡表示學習模型Node2vec來進行網絡節點的特征表示,將結構特征向量和相應用戶節點的文本特征向量進行拼接,形成社交用戶節點的向量表示。

(2)標注了部分網絡安全用戶,初步形成網絡安全用戶資料庫。對于每個用戶節點,生成其網絡安全文本特征。

(3)利用自監督學習方法進行分類模型的訓練樣本擴充,提升了分類效果。

結果表明,在已經收集的Twitter數據集上,所提方法的平均識別準確率為96.37%,比現有常用的算法平均高出0.48%~3.67%。




本文詳細內容請下載http://m.xxav2194.com/resource/share/2000004615




作者信息:

劉向宇,燕  瑋,孟星妤,侯開茂

(華北計算機系統工程研究所,北京100083)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: a毛片a毛片a视频| 乱色精品无码一区二区国产盗| 金8国欧美系列在线| 国内精品伊人久久久久网站| 久久er这里只有精品| 欧美成年黄网站色视频| 午夜爽爽爽男女污污污网站| 国产91小视频| 国精产品一区一区三区MBA下载| 中文字幕无码人妻aaa片| 樱花草在线社区www韩国| 免费人成在线观看视频播放| 青青青激情视频在线最新| 国产精品自在线观看剧情| 一个人晚上睡不着看b站大全| 日本暴力喉深到呕吐hd| 亚洲人成人77777网站不卡| 男女做性猛烈叫床视频免费 | 乱人伦人妻中文字幕在线入口| 爱情岛论坛亚洲永久入口口 | 国产在线19禁在线观看| 67194线路1(点击进入)| 宵宫被爆3d动画羞羞漫画| 久久久婷婷五月亚洲97号色| 欧美中文字幕在线播放| 亚洲综合激情视频| 精品福利视频导航| 国产午夜精品理论片| 你懂的国产高清在线播放视频| 多女多p多杂交视频在线观看| 一级黄色毛片免费看| 日本丰满毛茸茸**| 亚洲av永久精品爱情岛论坛| 欧美黑人两根巨大挤入| 免费一级欧美在线观看视频片| 老湿机香蕉久久久久久| 国产成人亚洲综合在线| 香蕉视频在线看| 在人间免费观看未删减| а√在线地址最新版| 成年人网站黄色|