《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于支持向量機(jī)和PCA的腦電α波運(yùn)動(dòng)想象分類(lèi)研究
基于支持向量機(jī)和PCA的腦電α波運(yùn)動(dòng)想象分類(lèi)研究
2022年電子技術(shù)應(yīng)用第6期
蔡 靖1,劉光達(dá)1,王堯堯1,宮曉宇2
1.吉林大學(xué) 儀器科學(xué)與電氣工程學(xué)院,吉林 長(zhǎng)春130012;2.吉林大學(xué) 教育技術(shù)中心,吉林 長(zhǎng)春130061
摘要: 針對(duì)腦電信號(hào)(EEG)運(yùn)動(dòng)想象分類(lèi)過(guò)程中弱相關(guān)特征量影響分類(lèi)準(zhǔn)確度的問(wèn)題,提出一種篩選方法,該方法是基于α波和主成分分析(PCA)算法的。基于腦機(jī)接口(BCI)系統(tǒng),通過(guò)聽(tīng)覺(jué)誘發(fā)刺激產(chǎn)生向左和向右兩種運(yùn)動(dòng)想象任務(wù)對(duì)應(yīng)的腦電信號(hào),并對(duì)其做小波包分解處理,然后進(jìn)行腦電α頻段信號(hào)的重構(gòu),從而提取出α波形并對(duì)其進(jìn)行統(tǒng)計(jì)特征提取。再結(jié)合PCA技術(shù)和支持向量機(jī)(SVM)方法,實(shí)現(xiàn)弱相關(guān)特征的剔除和特征分類(lèi)。根據(jù)篩選后的數(shù)據(jù)進(jìn)行分類(lèi),所得結(jié)果準(zhǔn)確率更高,信號(hào)分類(lèi)的準(zhǔn)確度由90.1%提高至94.0%。
中圖分類(lèi)號(hào): TN911.7;R318
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.211723
中文引用格式: 蔡靖,劉光達(dá),王堯堯,等. 基于支持向量機(jī)和PCA的腦電α波運(yùn)動(dòng)想象分類(lèi)研究[J].電子技術(shù)應(yīng)用,2022,48(6):23-27.
英文引用格式: Cai Jing,Liu Guangda,Wang Yaoyao,et al. Classification of α wave motor imagery based on SVM and PCA[J]. Application of Electronic Technique,2022,48(6):23-27.
Classification of α wave motor imagery based on SVM and PCA
Cai Jing1,Liu Guangda1,Wang Yaoyao1,Gong Xiaoyu2
1.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China; 2.Educational Technology Center,Jilin University,Changchun 130061,China
Abstract: A feature screening method based on alpha wave and principal component analysis was proposed to solve the problem that the weakly correlated feature quantity would affect the classification accuracy in EEG motor imagery classification. Based on brain computer interface system, the EEG signals corresponding to left and right motor imagination tasks were generated by auditory stimulation and processed by wavelet packet decomposition, and then the α band signals of the EEG were reconstructed, so as to extract the α waveforms and extract the statistical features. Combined with PCA technology and SVM method, the weak correlation features are eliminated and classified. According to the selected data, the accuracy of the results is higher, and the accuracy of signal classification is improved from 90.1% to 94.0%.
Key words : wavelet packet decomposition;SVM;motor imagery;PCA;EEG

0 引言

    腦電信號(hào)EEG是大腦中神經(jīng)元產(chǎn)生的生物電[1],不同的運(yùn)動(dòng)想象活動(dòng)中,大腦釋放不同的腦電信號(hào)[2]。腦電波按頻率大小分為五大類(lèi):α波(8~14 Hz)、β波(14~30 Hz)、θ波(4~8 Hz)、δ波(4 Hz以下)和γ波(30 Hz以上)[3]。本文對(duì)腦電信號(hào)進(jìn)行小波分解并提取α波[4],計(jì)算α波的多個(gè)信號(hào)特征,利用PCA技術(shù)篩選出強(qiáng)相關(guān)特征量,運(yùn)用支持向量機(jī)進(jìn)行運(yùn)動(dòng)想象分類(lèi)[5]。通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)運(yùn)用小波包變換和PCA技術(shù)后的分類(lèi)準(zhǔn)確率明顯提高。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://m.xxav2194.com/resource/share/2000004413




作者信息:

蔡  靖1,劉光達(dá)1,王堯堯1,宮曉宇2

(1.吉林大學(xué) 儀器科學(xué)與電氣工程學(xué)院,吉林 長(zhǎng)春130012;2.吉林大學(xué) 教育技術(shù)中心,吉林 長(zhǎng)春130061)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 麻豆视频免费播放| 中文字幕无码免费久久9一区9| 精品精品国产高清a毛片| 国产精品久久久久影院嫩草| 国产精品大尺度尺度视频| 中文字幕无码不卡一区二区三区| 欧美成人高清ww| 午夜国产羞羞视频免费网站| 国产在线a免费观看| 在线视频1卡二卡三卡| 丰满少妇被猛男猛烈进入久久| 欧美人与动性行为另类| 免费无码黄网站在线观看| 韩国福利视频一区二区| 国产精品视频免费一区二区三区| 一级毛片视频免费观看| 日韩大片在线永久免费观看网站| 亚洲毛片免费观看| 精品女同一区二区三区免费站 | 在线观看国产成人av片| 中文字幕视频免费| 樱桃视频影院在线观看| 人妻有码中文字幕| 老子影院午夜精品欧美视频| 国产新疆成人a一片在线观看| 91精品综合久久久久久五月天| 影音先锋男人天堂| 久久亚洲春色中文字幕久久久| 欧美另类黑人巨大videos| 伊人222综合| 精品无码一区二区三区在线| 国产午夜影视大全免费观看| 色聚网久久综合| 在厨房被强行侵犯中文字幕| 三上悠亚ssni409在线看| 日本午夜免费福利视频| 亚洲av永久无码| 欧美日韩大片在线观看| 人人添人人妻人人爽夜欢视AV| 美女主播免费观看| 国产乱码精品一区二区三区四川人|