《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 從頻域角度重新分析對抗樣本
從頻域角度重新分析對抗樣本
信息技術(shù)與網(wǎng)絡(luò)安全 5期
丁 燁1,王 杰1,宛 齊1,廖 清2
(1.東莞理工學(xué)院 網(wǎng)絡(luò)空間安全學(xué)院,廣東 東莞523820; 2.哈爾濱工業(yè)大學(xué)(深圳) 計算機(jī)科學(xué)與技術(shù)學(xué)院,廣東 深圳518055)
摘要: 目前在空間域上關(guān)于對抗樣本的研究成果已經(jīng)相當(dāng)成熟,但是在頻域上的相關(guān)工作卻是十分缺乏。從頻域的角度對對抗樣本進(jìn)行深入的研究,發(fā)現(xiàn)對抗樣本在DCT域上表現(xiàn)出了高度可識別的偽影,并利用這些偽影信息訓(xùn)練了一個基于頻域的對抗樣本檢測器CNN-DCT,結(jié)果表明,對于常見的對抗樣本在數(shù)據(jù)集CIFAR-10和SVHN上都能達(dá)到98%的檢測準(zhǔn)確率。此外,針對對抗樣本在頻域上存在的偽影,也提出一種通用的改進(jìn)算法IAA-DCT來解決。簡而言之,本文不僅填充了對抗樣本在頻域上工作的缺少,也改進(jìn)了對抗攻擊算法在頻域上存在偽影的弊端。
關(guān)鍵詞: 對抗樣本 頻域 DCT域 對抗攻擊
中圖分類號: TP391
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.05.009
引用格式: 丁燁,王杰,宛齊,等. 從頻域角度重新分析對抗樣本[J].信息技術(shù)與網(wǎng)絡(luò)安全,2022,41(5):59-65,76.
Analysis of adversarial examples from frequency domain
Ding Ye1,Wang Jie1,Wan Qi1,Liao Qing2
(1.School of Cyberspace Security,Dongguan University of Technology,Dongguan 523820,China; 2.School of Computer Science and Technology,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China)
Abstract: Research on adversarial examples in spatial domain is well studied, but related works in frequency domain is scarce. In this paper, we conduct thorough study of adversarial examples in frequency domain and find that adversarial examples exhibit highly identifiable artifacts in Discrete cosine transform(DCT) domain. Hence, a frequency domain-based adversarial example detector, CNN-DCT, is trained based on such artifact information, and the results achieve 98% detection accuracy for common adversarial examples on both CIFAR-10 and SVHN datasets. In addition, a general improved algorithm, IAA-DCT, is also proposed to address the artifacts that exist in the frequency domain for the adversarial examples. In conclusion, this paper not only provides studies of adversarial examples in frequency domain, but also improves the disadvantages of the adversarial attack algorithm with artifacts in the frequency domain.
Key words : adversarial example;frequency domain;discrete cosine transform(DCT) domain;adversarial attack

0 引言

對抗攻擊通過在深度學(xué)習(xí)模型中加入人類視覺上無法察覺的擾動,被稱為對抗樣本[1]。對抗樣本可以使模型受到干擾而產(chǎn)生錯誤的分類,從而導(dǎo)致錯誤類別的置信度大于正確類別的置信度。隨著深度學(xué)習(xí)在不同的任務(wù)上取得優(yōu)異性能,如人臉識別、自動駕駛、會議記錄等,對人類社會進(jìn)步帶來了巨大的貢獻(xiàn)。然而在許多的研究工作中,對抗攻擊被證明可以在圖像、視頻、語音等領(lǐng)域的深度學(xué)習(xí)中執(zhí)行惡意任務(wù),從而造成重大的安全問題。

為了解決對抗攻擊帶來的影響,避免這種惡意的攻擊,研究者們開始了對對抗攻擊的防御工作。對抗防御主要分為兩個方面,一個方面是直接改進(jìn)模型而讓現(xiàn)有的對抗攻擊方法失效,如防御性蒸餾[2]。另外一個方面是進(jìn)行對抗樣本的檢測。關(guān)于對抗檢測的研究主要集中在圖像域中對圖片特征處理,如Xu等人[3]提出了一種基于特征壓縮的對抗樣本檢測方法;Joel等人[4]在頻譜上綜合分析了現(xiàn)有的攻擊方法和數(shù)據(jù)集,發(fā)現(xiàn)大部分的對抗樣本在頻域都出現(xiàn)了嚴(yán)重的偽影,并且在頻域空間這些偽影數(shù)據(jù)可以分離,從而能夠分類識別。



本文詳細(xì)內(nèi)容請下載:http://m.xxav2194.com/resource/share/2000004248





作者信息:

丁  燁1,王  杰1,宛  齊1,廖  清2

(1.東莞理工學(xué)院 網(wǎng)絡(luò)空間安全學(xué)院,廣東 東莞523820;

2.哈爾濱工業(yè)大學(xué)(深圳) 計算機(jī)科學(xué)與技術(shù)學(xué)院,廣東 深圳518055)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 风流艳妇在线观看| 两个人看的视频高清在线www| 粗大的内捧猛烈进出小视频| 国产成人免费手机在线观看视频| A级国产乱理论片在线观看| 日日操夜夜操免费视频| 亚洲国产成a人v在线观看| 精品久久一区二区| 国产亚洲精品精品精品| 18分钟处破好疼哭视频在线| 天天躁夜夜躁狠狠躁2021| 中文字幕高清有码在线中字| 果冻麻豆星空天美精东影业| 亚洲精品美女久久久久9999| 美女和男生一起差差差| 国产女王丨vk| 2021三级a电影大全| 女人被男人躁到呻吟的| 久久99精品久久久大学生| 欧美一级片手机在线观看| 亚洲视频免费一区| 精品日本一区二区三区在线观看 | 夜夜高潮夜夜爽夜夜爱爱一区| 中文精品北条麻妃中文| 暖暖在线视频日本| 亚洲女人18毛片水真多| 特级毛片a级毛片在线播放www| 后入内射国产一区二区| 国产黑丝袜在线| 国产精品网站在线观看免费传媒 | 撅起小屁股扒开调教bl| 久操视频免费观看| 欧美帅老头oldmangay| 亚洲色成人WWW永久在线观看| 精品国产高清久久久久久小说| 国产人成免费视频| 337p人体韩国极品| 国产成人精品日本亚洲专区6| 精品不卡一区二区| 日韩三级电影院| 性猛交╳xxx乱大交|