《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 標簽結合現實場景的交通標志分類檢測研究
標簽結合現實場景的交通標志分類檢測研究
2022年電子技術應用第3期
張 成,張瑞賓,王曙道
桂林航天工業學院 汽車與交通工程學院,廣西 桂林541004
摘要: 交通標志在車輛的安全行駛和自動駕駛中都有著大量的研究。由于交通標志的種類繁多且受各種因素的影響,交通標志的分類檢測也是一個具有挑戰的難題。為此,提出了一種標簽結合現實道路場景的交通標志分類檢測方法,該方法分為數據生成部分和目標檢測部分。實驗結果表明,利用該方法生成訓練數據,能夠有效地訓練深度卷積神經網絡,實現現實場景交通標志的分類檢測,并且優化的檢測模型相比文中提到的模型具有更小的體積和更快的速度。
中圖分類號: TP391
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211840
中文引用格式: 張成,張瑞賓,王曙道. 標簽結合現實場景的交通標志分類檢測研究[J].電子技術應用,2022,48(3):27-31,36.
英文引用格式: Zhang Cheng,Zhang Ruibin,Wang Shudao. Research on classification and detection of traffic signs based on tags combined with real scenes[J]. Application of Electronic Technique,2022,48(3):27-31,36.
Research on classification and detection of traffic signs based on tags combined with real scenes
Zhang Cheng,Zhang Ruibin,Wang Shudao
School of Automobile and Traffic Engineering,Guilin University of Aerospace Technology,Guilin 541004,China
Abstract: There are a lot of researches on traffic signs in the safe driving and automatic driving of vehicles. Due to the wide variety of traffic signs and the influence of various factors, the classification and detection of traffic signs is also a challenging problem. To this end, a traffic sign classification and detection method combining tags with real road scenes is proposed. The method is divided into a data generation part and a target detection part. Experimental results show that the use of this method to generate training data can effectively train deep convolutional neural networks to achieve classification and detection of traffic signs in real scenes, and the optimized detection model has a smaller size and faster speed than the model mentioned in the article.
Key words : traffic signs;automatic driving;data enhancement;DCNN;detection

0 引言

    在車輛安全和自動駕駛領域,交通標志檢測有著很大的實用價值。真實的交通場景復雜多變,交通標志易受到光照、雨霧和遮擋等外在因素的影響。傳統的檢測算法根據交通標志的形狀、顏色等特點[1-6],使用不同尺度大小的滑動窗口對待檢測圖片進行潛在目標區域提取,之后對潛在區域通過HOG(Histograms Of Oriented Gradient)[7]、Gabor[8]、Haar-like[9]等人工提取特征方法,結合支持向量機、BP(Back Propagation)神經網絡、極限學習機和最近鄰算法等常用的機器學習算法完成分類的任務。這些方法若要完成細分類檢測問題,工作量巨大,且最后的效果也不盡理想。

    深度學習方法不同于前面的方法,它利用深度卷積神經網絡完成特征提取,實現交通標志的檢測任務。目前常用方法可分為候選區域和邏輯回歸。候選區域的網絡(如RCNN(Region-Convolutional Neural Network)[10]、Faster R-CNN[11])先提取出候選的區域特征,之后根據候選區域的特征進行位置和類別的學習,這種方法突出了出色的檢測精度,犧牲了計算的時間和存儲資源;邏輯回歸的網絡(如YOLO(You Only Look Once)[12]、SSD(Single Shot Detector)[13])直接將預測邊界框的坐標和類別設置為回歸問題,提升了網絡的檢測速度,但是針對具體的任務網絡模型還需要進一步調整,且完成交通標志檢測的研究需要數據龐大的交通標志數據集。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003997




作者信息:

張  成,張瑞賓,王曙道

(桂林航天工業學院 汽車與交通工程學院,廣西 桂林541004)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲av永久无码精品三区在线4| 四虎成人精品免费影院| 一区二区三区杨幂在线观看| 欧美e片成人在线播放乱妇| 再灬再灬再灬深一点舒服| 国产激爽大片高清在线观看| 大伊香蕉精品一区视频在线 | 成人免费网站视频| 亚洲va久久久噜噜噜久久| 直接在线观看的三级网址| 国产午夜福利精品一区二区三区| 999zyz色资源站在线观看| 探花视频在线看视频| 亚洲av无码之日韩精品| 男人j进女人p免费视频| 国产乱码精品一区二区三| 你懂的在线播放| 天天综合色天天桴色| 久久久久久久99精品国产片| 极品艳短篇集500丝袜txt| 亚洲色图.com| 精品无码国产污污污免费网站国产| 国产成人综合亚洲一区| 91天堂国产在线在线播放| 娇小老少配xxxxx丶| 久久91精品国产一区二区| 最新国产精品精品视频| 亚洲欧美日韩另类在线| 粗大的内捧猛烈进出小视频| 国产一区二区精品久久| 国产一区二区三区夜色| 国产色婷婷精品综合在线| xxxx性开放xxxx| 成人试看120秒体验区| 久久国产精品久久久久久| 欧美XXXXXBBBB| 亚洲欧洲视频在线观看| 理论片2023最新在线观看| 午夜影视免费完整高清在线观看网站| 金瓶全集漫画1到22回无遮| 国产日韩精品欧美一区|