《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于浮柵器件的低位寬卷積神經網絡研究
基于浮柵器件的低位寬卷積神經網絡研究
信息技術與網絡安全
陳雅倩,黃 魯
(中國科學技術大學 微電子學院,安徽 合肥230026)
摘要: 浮柵器件(Flash)能夠將存儲和計算的特性相結合,實現存算一體化,但是單個浮柵單元最多只能存儲位寬為4 bit的數據。面向Nor Flash,研究了卷積神經網絡參數的低位寬量化,對經典的AlexNet、VGGNet以及ResNet通過量化感知訓練。采用非對稱量化,將模型參數從32位浮點數量化至4位定點數,模型大小變為原來的1/8,針對Cifar10數據集,4位量化模型的準確率相對于全精度網絡僅下降不到2%。最后將量化完成的卷積神經網絡模型使用Nor Flash陣列加速。Hspice仿真結果表明,相對于全精度模型,部署在Nor Flash陣列中的量化模型精度僅下降2.25%,驗證了卷積神經網絡部署在Nor Flash上的可行性。
中圖分類號: TP183
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.007
引用格式: 陳雅倩,黃魯. 基于浮柵器件的低位寬卷積神經網絡研究[J].信息技術與網絡安全,2021,40(6):38-42.
Quantification research of convolutional neural network oriented Nor Flash
Chen Yaqian,Huang Lu
(School of Microelectronics,University of Science and Technology of China,Hefei 230026,China)
Abstract: Flash is one of the most promising candidates to bulid processing-in-memory(PIM)structures. However,the data width in one flash is 4bit at most. This article is oriented to Nor Flash and studies the quantitzation of convolution neural network. It performs quantitative perception training on the classic AlexNet, VGGNet and ResNet, and uses asymmetric quantization to quantify the model parameters from 32-bit floating point to 4-bit, and the model size becomes 1/8 of the original. For the Cifar10 data set, the accuracy of the 4-bit quantization model is only less than 2% lower than that of the full-precision network. Finally, the quantized convolutional neural network model is accelerated by the Nor Flash array. Hspice simulation results show that the accuracy of the quantized model bulided in the Nor Flash array is only reduced by 2.25% compared to the full-precision model. The feasibility of deploying the convolutional neural network on Nor Flash is verified.
Key words : convolution neural network;quantification;computation in memory;Nor Flash

0 引言

卷積神經網絡(Convolution Neural Network,CNN)在圖像識別等領域有著廣泛的應用,隨著網絡深度的不斷增加,CNN模型的參數也越來越多,例如Alexnet[1]網絡,結構為5層卷積層,3層全連接層,網絡參數超過5 000萬,全精度的模型需要250 MB的存儲空間,而功能更加強大的VGG[2]網絡和Res[3]網絡的深度以及參數量更是遠遠超過Alexnet。對于這些卷積神經網絡,每個運算周期都需要對數百萬個參數進行讀取和運算,大量參數的讀取既影響網絡的計算速度也帶來了功耗問題。基于馮諾依曼架構的硬件由于計算單元和存儲單元分離,在部署CNN模型時面臨存儲墻問題,數據頻繁搬運消耗的時間和能量遠遠大于計算單元計算消耗的時間和能量。

存算一體架構的硬件相對于馮諾依曼架構的硬件,將計算單元和存儲單元合并,大大減少了數據的傳輸,從而降低功耗和加快計算速度[4],因此將深度卷積神經網絡部署在基于存算一體架構的硬件上具有廣闊的前景。目前實現存算一體化的硬件主要包括相變存儲器[5](Phase Change Memory,PCM),阻變存儲器ReRAM[6]以及浮柵器件Flash,其中Flash由于制造工藝成熟,受到廣泛關注。



本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003598




作者信息:

陳雅倩,黃  魯

(中國科學技術大學 微電子學院,安徽 合肥230026)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 无码熟熟妇丰满人妻啪啪软件| 男人扒开女人的腿做爽爽视频| 国产精品美女乱子伦高| 免费一级毛片不卡在线播放| 97人洗澡人人澡人人爽人人模| 欧美丝袜高跟鞋一区二区| 午夜福利视频合集1000| 中文无线乱码二三四区| 天天色综合天天| 丰满少妇高潮惨叫久久久| 精品久久免费视频| 国产探花在线精品一区二区| 中文字幕在线高清| 热久久这里是精品6免费观看 | 人妻内射一区二区在线视频| 韩国19禁无遮挡啪啪无码网站| 国产精品色拉拉免费看| yellow字幕网在线zmzz91| 男人j桶进女人j的视频| 国产乱妇无码大片在线观看| jizzz护士| 樱花视频www| 噼里啪啦免费观看高清动漫| 95在线观看精品视频| 成人午夜在线视频| 亚洲国产精品久久久天堂| 青青视频国产在线播放| 国产精品成人第一区| fc2免费人成在线| 成年人性生活免费视频| 久香草视频在线观看| 欧美日韩国产精品自在自线| 伊人免费视频二| 麻豆麻豆必出精品入口| 国产精品视频久久久久久| videos欧美成人| 成人无码WWW免费视频| 久久亚洲伊人中字综合精品| 波多野结衣痴女系列73| 又大又紧又硬又湿a视频| 青青草成人影院|