《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于浮柵器件的低位寬卷積神經網絡研究
基于浮柵器件的低位寬卷積神經網絡研究
信息技術與網絡安全
陳雅倩,黃 魯
(中國科學技術大學 微電子學院,安徽 合肥230026)
摘要: 浮柵器件(Flash)能夠將存儲和計算的特性相結合,實現存算一體化,但是單個浮柵單元最多只能存儲位寬為4 bit的數據。面向Nor Flash,研究了卷積神經網絡參數的低位寬量化,對經典的AlexNet、VGGNet以及ResNet通過量化感知訓練。采用非對稱量化,將模型參數從32位浮點數量化至4位定點數,模型大小變為原來的1/8,針對Cifar10數據集,4位量化模型的準確率相對于全精度網絡僅下降不到2%。最后將量化完成的卷積神經網絡模型使用Nor Flash陣列加速。Hspice仿真結果表明,相對于全精度模型,部署在Nor Flash陣列中的量化模型精度僅下降2.25%,驗證了卷積神經網絡部署在Nor Flash上的可行性。
中圖分類號: TP183
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.007
引用格式: 陳雅倩,黃魯. 基于浮柵器件的低位寬卷積神經網絡研究[J].信息技術與網絡安全,2021,40(6):38-42.
Quantification research of convolutional neural network oriented Nor Flash
Chen Yaqian,Huang Lu
(School of Microelectronics,University of Science and Technology of China,Hefei 230026,China)
Abstract: Flash is one of the most promising candidates to bulid processing-in-memory(PIM)structures. However,the data width in one flash is 4bit at most. This article is oriented to Nor Flash and studies the quantitzation of convolution neural network. It performs quantitative perception training on the classic AlexNet, VGGNet and ResNet, and uses asymmetric quantization to quantify the model parameters from 32-bit floating point to 4-bit, and the model size becomes 1/8 of the original. For the Cifar10 data set, the accuracy of the 4-bit quantization model is only less than 2% lower than that of the full-precision network. Finally, the quantized convolutional neural network model is accelerated by the Nor Flash array. Hspice simulation results show that the accuracy of the quantized model bulided in the Nor Flash array is only reduced by 2.25% compared to the full-precision model. The feasibility of deploying the convolutional neural network on Nor Flash is verified.
Key words : convolution neural network;quantification;computation in memory;Nor Flash

0 引言

卷積神經網絡(Convolution Neural Network,CNN)在圖像識別等領域有著廣泛的應用,隨著網絡深度的不斷增加,CNN模型的參數也越來越多,例如Alexnet[1]網絡,結構為5層卷積層,3層全連接層,網絡參數超過5 000萬,全精度的模型需要250 MB的存儲空間,而功能更加強大的VGG[2]網絡和Res[3]網絡的深度以及參數量更是遠遠超過Alexnet。對于這些卷積神經網絡,每個運算周期都需要對數百萬個參數進行讀取和運算,大量參數的讀取既影響網絡的計算速度也帶來了功耗問題。基于馮諾依曼架構的硬件由于計算單元和存儲單元分離,在部署CNN模型時面臨存儲墻問題,數據頻繁搬運消耗的時間和能量遠遠大于計算單元計算消耗的時間和能量。

存算一體架構的硬件相對于馮諾依曼架構的硬件,將計算單元和存儲單元合并,大大減少了數據的傳輸,從而降低功耗和加快計算速度[4],因此將深度卷積神經網絡部署在基于存算一體架構的硬件上具有廣闊的前景。目前實現存算一體化的硬件主要包括相變存儲器[5](Phase Change Memory,PCM),阻變存儲器ReRAM[6]以及浮柵器件Flash,其中Flash由于制造工藝成熟,受到廣泛關注。



本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003598




作者信息:

陳雅倩,黃  魯

(中國科學技術大學 微電子學院,安徽 合肥230026)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产午夜在线视频| 好吊妞视频这里有精品| 亚洲欧洲综合在线| 老子影院午夜伦不卡亚洲| 国产精品女人在线观看| 一区二区三区在线播放视频| 日韩免费视频播放| 亚洲欧洲国产精品久久| 精品国产人成亚洲区| 国产女人18毛片水真多1| 91精品国产三级在线观看| 性欧美18-19sex性高清播放| 久久精品国产只有精品2020| 欧美视频免费在线| 再深点灬舒服灬太大| 韩国无遮挡羞羞漫画| 国产精品成人扳**a毛片| www四虎在线高清| 日朝欧美亚洲精品| 亚洲av午夜精品无码专区| 永生动漫免费观看完整版高清西瓜 | 老子影院午夜伦不卡不四虎卡 | 久热综合在线亚洲精品| 永久黄网站色视频免费直播| 动漫美女羞羞漫画| 试看120秒做暖暖免费体验区| 国产精品久久香蕉免费播放| uyghur69sexvideos| 捏揉舔水插按摩师| 久久天天躁狠狠躁夜夜爽| 欧美人与动人物姣配xxxx| 亚洲第一黄网站| 福利一区二区在线观看| 四虎影8818| 邱淑芬一家交换| 国产日韩精品视频| 2018国产大陆天天弄| 夜夜爽夜夜叫夜夜高潮漏水| 一本一道久久a久久精品综合| 无遮挡h肉动漫网站| 久久综合精品国产二区无码|