《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于NSST和NLMF的多聚焦圖像融合
基于NSST和NLMF的多聚焦圖像融合
信息技術與網絡安全
吳 劍1,吳曉紅1,何小海1,李林怡2,卿粼波1
(1.四川大學 電子信息學院 圖像信息研究所,四川 成都610065; 2.中國民航局第二研究所,四川 成都610041)
摘要: 為對融合圖像的信息豐富度、邊緣清晰度以及視覺效果作進一步的提升,設計了一種基于非下采樣剪切波變換(NSST)結合非局部均值濾波(NLMF)的多聚焦圖像融合算法。首先,將源圖像通過NSST變換進行多尺度、多方向分解得到高、低頻子帶系數。其次,對低頻子帶系數采用局部區域的改進拉普拉斯能量和以及非局部均值濾波融合方法構建低頻子帶系數融合權重;對高頻子帶系數采用基于相關系數的空間頻率與能量相結合的融合規則,再加以相位一致性規則,構建高頻子帶系數融合權重;最后,通過NSST反變換得到最終融合圖像。從三組不同聚焦圖像的實驗結果來看,所提算法不論是在主觀視覺上,還是在客觀評價上,融合圖像的輪廓、紋理等信息保留度以及視覺清晰度都有較好的提升。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.05.007
引用格式: 吳劍,吳曉紅,何小海,等. 基于NSST和NLMF的多聚焦圖像融合[J].信息技術與網絡安全,2021,40(5):39-44.
Multi-focus image fusion based on NSST and NLMF
Wu Jian1,Wu Xiaohong1,He Xiaohai1,Li Linyi2,Qing Linbo1
(1.Institute of Image Information,School of Electronics and Information Engineering, Sichuan University,Chengdu 610065,China; 2.The Second Research Institute of CAAC,Chengdu 610041,China)
Abstract: In order to further improve the information richness, edge clarity and visual effect of the fused image, a multi-focus image fusion algorithm based on non-downsampling shear wave transform(NSST) combined with non-local mean filtering(NLMF) was designed. Firstly, the source image was multi-scale and multi-directionally decomposed by NSST transform to obtain high and low frequency subband coefficients. Secondly, the improved Sum Modified Laplacian and the non-local mean filter fusion method were used for the low-frequency subband coefficients to construct the fusion weights of low-frequency subband coefficient; For the high-frequency subband coefficients, fusion rules based on the combination of spatial frequency and energy based on correlation coefficients were used, and then phase consistency rules were added to construct the fusion weights of high-frequency subband coefficient; Finally, the final fusion image was obtained by inverse NSST transformation. The experimental results from three sets of different focused images show that: Whether the algorithm in this paper is in subjective vision or objective evaluation, the information retention and visual clarity of the fusion image′s contour and texture have been improved.
Key words : multi-focus image fusion;non-local mean filtering;phase consistency;correlation coefficient

0 引言

圖像技術的不斷發展以及現代光學成像設備的聚焦范圍局限性,很難保證成像圖像都位于聚焦區域。多聚焦圖像融合技術將同一場景通過相同傳感器得到的不同聚焦信息有效地整合在一起,形成一幅內容豐富、信息飽和的聚焦圖像,可應用在遙感技術、醫學圖像和攝影等方面。

基于變換域的融合方法將源圖像通過各種變換以得到多尺度、多方向的多幅子帶圖像;然后,通過各種融合規則對子帶圖像進行融合;再通過反變換得到最終融合圖像。非下采樣輪廓波變換(Non-Subsampled Contourlet Transform,NSCT)[1]的提出主要解決了融合圖像的邊緣及輪廓表現得不是很明顯的問題。但是此變換忽視了空間一致性。通過NSCT[2-3]和脈沖耦合神經網絡(Pulse Coupled Neural Network,PCNN)的有效結合,不僅解決了空間一致性問題,同時也實現了更好的視覺效果。由于非下采樣剪切波變換(Non-Subsampled Shearlet Transform,NSST)[4]具有多方向、多尺度變換,平移不變等良好特性,也被用于圖像融合。稀疏表示(Sparse Representations,SR)[5]、低秩表示(Low-Rank Representation,LRR)[6]最近幾年也相繼出現在圖像融合領域,LRR在帶有噪聲的圖像融合中表現較為突出?;诰矸e神經網絡(Convolutional Neural Networks,CNN)的圖像融合技術[7]等也被提出,并且達到了很好的視覺效果。

BUDADES A等提出的非局部均值濾波(Non-Local Mean Filter,NLMF)算法[8]不僅能達到去除噪聲的目的,還能在很大程度上保留圖像的結構信息。



本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003549




作者信息:

吳  劍1,吳曉紅1,何小海1,李林怡2,卿粼波1

(1.四川大學 電子信息學院 圖像信息研究所,四川 成都610065;

2.中國民航局第二研究所,四川 成都610041)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 2021国产精品久久| 又粗又大又硬又爽的免费视频 | 男女疯狂一边摸一边做羞羞视频| 国产欧美日韩另类精彩视频| 久久久无码精品亚洲日韩蜜桃| 精品无码黑人又粗又大又长| 在线成年人网站| 亚洲VA中文字幕| 美女黄色一级毛片| 国产破外女出血视频| j8又粗又硬又大又爽视频| 欧美人与性动交α欧美精品| 国产八十老太另类| 一个人免费观看www视频| 日韩成人免费视频| 亚洲精品tv久久久久久久久 | 日韩精品久久无码人妻中文字幕| 四虎永久在线精品免费影视 | 伊人久久大香线蕉亚洲| 色屁屁www影院免费观看视频| 国产的一级毛片最新在线直播| 99精品久久久中文字幕| 欧美视频在线播放bbxxx| 四虎国产精品免费视| 黄页网址在线观看| 好深好爽办公室做视频| 亚洲国产第一区| 色天使久久综合网天天| 国产精品_国产精品_国产精品| 99精品全国免费观看视频| 性猛交xxxxx按摩中国| 亚洲人成亚洲人成在线观看 | 性欧美大战久久久久久久| 久久国产精品偷| 欧洲精品码一区二区三区免费看 | 久久久精品人妻一区二区三区| 欧美亚洲综合网| 亚洲熟妇丰满xxxxx| 韩国朋友夫妇:交换4| 国产精品亚洲色婷婷99久久精品| 久久人人爽人人爽人人av东京热|