《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于重點突發詞的突發事件檢測方法
基于重點突發詞的突發事件檢測方法
2020年電子技術應用第11期
富雅玲1,楊文忠1,2,吾守爾·斯拉木1,楊蒙蒙1,梁 凡1
1.新疆大學 信息科學與工程學院,新疆 烏魯木齊830046; 2.中國電子科學研究院 社會安全風險感知與防控大數據應用國家工程實驗室,新疆 烏魯木齊830000
摘要: 由于突發事件具有突發性、聚眾性、破壞性,針對微博中發布的突發事件,避免由突發事帶來一系列社會問題,提出一種結合用戶影響力和突發詞的突發事件檢測方法。為提取大量重點突發詞,使用詞影響力和詞狀態兩個指標計算詞突發值,將大于一定閾值的詞作為突發詞;采用凝聚層次聚類方法,對突發詞集的共現矩陣進行聚類得到熱點話題。之后將結果放入訓練好的分類器對熱點話題進行分類,最終得到突發事件及其類型。使用真實的微博數據對其進行實驗,對比使用分類器前后的實驗結果,該方法可以有效過濾一般熱點話題,提高突發事件檢測的準確率。
中圖分類號: TP391.1
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200148
中文引用格式: 富雅玲,楊文忠,吾守爾·斯拉木,等. 基于重點突發詞的突發事件檢測方法[J].電子技術應用,2020,46(11):82-86.
英文引用格式: Fu Yaling,Yang Wenzhong,Woxur Silamu,et al. Method of bursty events detection based on key bursty-words[J]. Application of Electronic Technique,2020,46(11):82-86.
Method of bursty events detection based on key bursty-words
Fu Yaling1,Yang Wenzhong1,2,Woxur Silamu1,Yang Mengmeng1,Liang Fan1
1.College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China; 2.National Engineering Laboratory of Social Security Risk Perception and Prevention and Control of Big Data Application, Chinese Academy of Electronic Sciences,Urumqi 830000,China
Abstract: Because of the suddenness, crowd-gathering and destructiveness of bursty events, this paper proposes an bursty event detection method combining user influence and bursty-words for the bursty events published in weibo to avoid a series of social problems caused by bursty events. In order to extract a large number of key burst-words, we need to first calculate the bursty value of words, using two indicators: word influence and word state, taking words larger than a certain threshold as burst words; adopting cohesive hierarchical clustering method, hot topics are clustered by the co-occurrence matrix of burst word sets. After that, the results were put into the trained classifier to classify hot topics, and finally the bursty events and their types were obtained. The real microblog data were used to conduct bursty events on them. The experimental results before and after the use of the classifier were compared. This method can effectively filter common hot topics and improve the accuracy of emergency detection.
Key words : bursty event;burst word;clustering;classification;event detection

0 引言

    微博因其良好的服務和海量的用戶而被大眾所熟知,現已成為國內最大的社交媒體。突發事件具有突發性和破壞性,在發生突發性事件,網民在社交媒體上進行傳播,沒有相應的法律條款來對事件采取相應措施,對應急管理會形成一些障礙,如果不能及時遏制事件發展的趨勢,將會給社會帶來一些負面影響。社交網絡中的突發事件是指在社交網絡中先前若干時間段內該事件很少被用戶討論或者被討論頻次呈現平穩分布,但在當前時間段內以高頻次出現的事件[1]事件檢測有助于及時了解人們對事件的看法和實際情況,減少突發事件信息搜索的任務,這一工作為自然語言處理(NLP)和機器學習的研究提供了方向[2]。因此,快速有效地檢測到突發事件,及時消除突發事件可能帶來的社會負面效應,變得尤為重要。綜合以上分析,提出一種結合用戶影響力和突發詞的突發事件檢測方法,對突發事件及其類型進行檢測。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000003060




作者信息:

富雅玲1,楊文忠1,2,吾守爾·斯拉木1,楊蒙蒙1,梁  凡1

(1.新疆大學 信息科學與工程學院,新疆 烏魯木齊830046;

2.中國電子科學研究院 社會安全風險感知與防控大數據應用國家工程實驗室,新疆 烏魯木齊830000)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 天天色影综合网| 最近中文字幕电影大全免费版| 国产国产精品人在线观看| JZZIJZZIJ日本成熟少妇| 日本护士xxxx视频| 亚洲欧美一区二区三区日产| 精精国产www视频在线观看免费| 国产白嫩漂亮美女在线观看| a级日本理论片在线播放| 无码国产精品一区二区高潮| 亚洲伊人久久大香线蕉结合| 男人j桶进女人p无遮挡免费观看| 国产三级在线看| 日本在线xxxx| 国精品无码一区二区三区在线蜜臀 | 欧美成人免费tv在线播放| 午夜免费福利在线| 高清伦理电影在线看| 国产精品看高国产精品不卡| 一二三四社区在线中文视频| 日本午夜精品一区二区三区电影| 亚洲人成无码网站在线观看| 激情图片小说网| 又粗又长又爽又大硬又黄| 香蕉视频在线精品| 国产精品久久久久久一区二区三区 | 国产一区二区三区在线观看视频| 五月天亚洲色图| 国产高清视频在线播放www色| 一区二区三区四区在线视频| 日本久久免费大片| 亚洲av无码专区国产不乱码| 欧美黑人粗大xxxxbbbb| 免费观看一级毛片| 自拍偷在线精品自拍偷| 国产大尺度吃奶无遮无挡网| 西西人体www高清大胆视频| 在线天堂bt种子| 一个人hd高清在线观看| 把女人弄爽大黄a大片片| 久久精品国产99国产精2020丨|