《電子技術應用》
您所在的位置:首頁 > 其他 > 業界動態 > 無人機和人工智能將會帶來怎樣的新視覺

無人機和人工智能將會帶來怎樣的新視覺

2019-09-05
關鍵詞: 人工智能 無人機

  毫無疑問,無人機應用正在成為工業4.0的一個組成部分。當無人機與人工智能相結合,無論是在繁忙的施工現場、壯觀的太陽能陣列上空,還是在一望無際的農場、鯊魚出沒的海灘,兩者不斷為人類管理者提供全新的視覺。

  這種視覺讓我們有能力看得更廣、更清晰、更深入,而當無人機采集的圖像轉化為大型數據集,并結合強大的分析軟件,則為我們提供了的數據采集、分析、管理、維護與預測能力。

  pIYBAF1wcfCABiBPAAGrTFcjEE0805.png

  隨著無人機技術的不斷發展和普及,用于維護、測量、測繪和監測等各種任務的高分辨率圖像的可用性正在增加。作為人工智能在無人機行業中重要的應用目標之一,有效利用無人機收集的大型數據集則意味著可對數據集以自動化方式進行處理。

  在目前,市場上已經有許多成熟的軟件公司為用戶提供基于人工智能的數據分析解決方案,使非結構化無人機數據“可操作”并獲得有價值的分析結果,而無需耗時的手動分析。

  1.實踐中的智能分析

  從農業到建筑,從能源到安全/安防,深度學習或機器學習算法的使用已經涵蓋了無人機應用的許多垂直領域。

  例如,在2017年底,Pix4D已經開始使用機器學習算法進行多種攝影測量應用,將3D點云分類為建筑物,道路或植被等類別,而現在已經可以使用各種智能工具來計算樹木數量并確定它們的高度和種類,甚至可以使用這些工具來確定道路、建筑物或植被表面計數,還可以計算停車場中的汽車數量,或一定區域中適合安裝太陽能電池的屋頂。

  Pix4D還與Hummingbird合作開發了一款軟件,幫助農場經理和農藝師解決那些導致生產力受到嚴重破壞的作物和植物病害問題。他們將特定的機器學習功能添加到強大的算法中,以發現和破譯隱藏的模式,從而幫助客戶實現更準確的診斷和針對性處理。

  Ardenna公司正在利用圖像處理和人工智能進行自動檢測,對鐵路和風力渦輪機檢查過程中發現的異常情況進行分類和報告。在無人機進行鐵路檢查后,他們收集了來自100英里鐵軌的大約40,000張圖像,而該公司的軟件可以自動檢測30種不同類型的異常,處理時間不到5小時。

  Skycatch的系統則可以在施工現場執行自動化任務,通過深度學習模型識別和跟蹤施工現場的資產和物料交付。像這樣的實時跟蹤可以用于預測項目延遲,而隨著時間的推移,該系統可以學習如何防止這種延遲,以幫助建筑公司節省大量資金。

  在2017年美國發生哈維颶風災害后,EagleView Technologies使用機器學習算法來創建房產分析數據。這種方法使得保險公司可以分析無人機圖像并有效地對損害進行分類,這對于在颶風后快速處理大量索賠起到了非常重要的作用。

  澳大利亞的Westpac集團推出了世界自動化鯊魚監測無人機系統Shark Spotter,該系統基于復雜的深度學習框架開發了一種算法,可通過配備物體識別功能的無人機來實時檢測和識別水中鯊魚的出沒跡象,并快速應對海灘附近的鯊魚潛在威脅。

  美國公司Nanonets可為其他企業或軟件開發商在構建機器學習模型方面提供支持。所有客戶需要做的是向他們發送一些樣本,以便模型可以從中學習,例如檢查太陽能電廠或計算圖像中的某種物體。

  Nearthlab是一家韓國軟件公司,目前正在開發一種解決方案,可以自動檢測并報告照片中風力渦輪機葉片的損壞情況。通過應用此技術,客戶可以快速識別損壞,并在需要時啟動相關措施。

  普華永道英國是全球首家使用無人機進行庫存盤點審計的公司。公司用無人機拍攝英國后一家燃煤電站之一的燃煤儲量,并將其拍攝的圖像用于創建點云“數字孿生”模型,以測量煤堆的體積。據測量結果,準確率超過99%。

  2.人工智能的加速應用

  根據DRONEII近對無人機數據分析軟件開發商的一項調查,無人機及相關的人工智能分析技術已經在能源、安全/安防、建筑、礦業、油氣開采、物流、農業、保險、地產、交通等多個行業都得到了廣泛應用。

  根據調查數據,大多數公司都致力于為能源行業開發用于數據分析的無人機軟件,可見該行業無人機應用的廣闊前景。

  許多受訪者表示,使用數據分析軟件不僅可以實現工業資產的可視化,還可以識別和管理維護問題或異常狀況。

  受訪企業參與的第二大應用行業是建筑業。其中,大多數應用涉及監測施工現場的變化或庫存量的測量。

  在礦業,采石和石油/天然氣開采行業,無人機軟件工具主要用于監控站點進度,測繪整個采礦站點的數據,或計算采掘量。

  調查還顯示,37%的受訪者僅使用人工智能算法,而63%的受訪者仍然信賴結合了機器學習或深度學習方法的傳統計算機視覺軟件。此外,沒有一家無人機數據分析服務商表示其既不使用機器學習也不使用深度學習算法。

  在僅使用AI驅動軟件的公司中,50%的公司同時采用了深度學習和機器學習算法,30%只使用機器學習算法,而20%只使用深度學習算法。

  在目前,雖然大多數無人機數據分析公司仍在使用傳統方法處理從無人機獲取的數據,但是所有參與者對是否部署人工智能工具做出積極回應的事實再次表明人工智能對無人機行業越來越重要。

  DRONEII認為,人工智能還不是所有大數據分析問題的解決方案。人工智能技術(機器學習或深度學習)及其結果僅與用于構建分類模型的訓練數據表現得一樣好。

  DRONEII預測,進一步利用和開發這些強大的智能數據處理工具將大大減少大數據的處理時間,而這正是目前的一個巨大挑戰。

  此外,雖然目前更多的軟件開發人員聚焦于能源,建筑,采礦和采石業等更為成熟的行業,但在未來,保險,農業,房地產和物流運輸等行業都將越來越多地尋求無人機相關分析軟件的幫助。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 日本永久免费a∨在线视频| 秋霞鲁丝片一区二区三区| 国产精品自产拍在线观看| 上课公然调教h| 日韩精品视频免费观看| 亚洲精品中文字幕乱码| 美女国产毛片a区内射| 国产成人无码a区在线观看视频 | 日本欧美一级二级三级不卡| 亚洲欧美综合人成野草| 精品国产麻豆免费人成网站| 国产大片91精品免费看3| 88av视频在线观看| 女人的精水喷出来视频| 丰满肥臀风间由美357在线| 最近中文字幕高清2019中文字幕 | 性色爽爱性色爽爱网站| 久久精品国产清高在天天线| 欧美精品一区二区三区在线| 军人野外吮她的花蒂无码视频| 风间由美性色一区二区三区| 国产精品午夜爆乳美女| chinese打桩大学生twink| 扒开老师的蕾丝内裤漫画| 五月婷婷开心综合| 欧美日韩在大午夜爽爽影院| 免费a级毛片视频| 老司机67194精品线观看| 国产小视频在线观看网站| 一级有奶水毛片免费看| 在线观看无码av网站永久免费| 两根黑人粗大噗嗤噗嗤视频| 日本人六九视频jⅰzzz| 九九在线中文字幕无码| 欧美同性videos视频| 亚洲精品成人网站在线观看| 精品一区二区三区免费毛片爱 | 成年丰满熟妇午夜免费视频| 久久无码专区国产精品| 欧美乱妇高清无乱码在线观看| 亚洲精品亚洲人成在线观看麻豆 |