《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 業界動態 > 谷歌開源 GPipe 庫,主要用于大規模深度學習模型的快速訓練

谷歌開源 GPipe 庫,主要用于大規模深度學習模型的快速訓練

2019-04-26

  谷歌 人工智能部門 最近開源了 GPipe ,這是一個用于快速訓練大規模深度學習模型的 TensorFlow 類庫。

  深層神經網絡(DNN)主要用于解決自然語言處理和視覺目標識別等人工智能任務。以視覺識別為例,該領域的最新方法通常以 ImageNet 挑戰賽 的獲勝方案為基準。每一屆冠軍的成績都優于前一屆;當然,模型的復雜度也會相應增加。2014 年的冠軍 GoogLeNet 通過使用 400 萬個模型參數達到了 74.8% 的 top-1 準確率,而 2017 年的冠軍 Squeeze-and-Excitation Networks 則使用了 1.458 億個參數并達到了 82.7% 的 top-1 準確率。

20130219_122824_907.jpg

  在訓練神經網絡的時候,模型大小的增加通常會引起問題。為了在合理的時間內完成訓練,我們把大部分的計算任務委托給了加速器:諸如 GPU 和 TPU 之類的專用硬件。但是這些設備的內存有限,這也就限制了訓練模型的大小。我們可以通過一些方法來減少模型對內存的依賴,比如將數據從加速器內存中置換出去,但這會大大減慢訓練速度。另一種解決方案則是模型分區,這可以讓模型同時在多個加速器中并行執行。對順序性 DNN 來說,最好的策略是按層劃分模型,然后由不同的加速器來訓練不同的層。但是由于 DNN 的順序性本質,有些時候可能只有一個加速器在工作,別的加速器則因為需要等待其它層的訓練結果而閑置下來。

  GPipe 通過進一步細化訓練任務解決了這個問題,它將批量任務分解為更細小的“微批量”任務,并在每一層中管道化執行這些“微批量”任務。這樣,下一層的加速器就可以優先處理上一層已完成的“微批量”任務結果,而不需要等待整個訓練過程的結束。

  通過使用 GPipe 以及 8 個 TPUv2(第二代 TPU 芯片),谷歌研究人員能夠用 18 億個參數來訓練視覺目標識別模型:在使用 GPipe 的情況下,單個 TPUv2 可訓練的參數量增加了 5.6 倍。通過此次訓練的大規模模型,ImageNet 數據驗證的準確率達到了 84.7%,超過了 2017 年奪冠時的 82.7%。

  GPipe 的模型分區除了能支持更大的模型以外,它也允許多個加速器并行訓練所指定的模型。研究報告稱,使用 4 倍以上的加速器可以達到 3.5 倍的加速效果。

  Gpipe 目前是 Lingvo 框架 的一部分,該框架主要用來在 TensorFlow 中構建順序神經網絡模型。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 忘忧草视频www| 亚洲三级在线看| 免费黄色a视频| 国产乱人伦偷精品视频| 免费一级毛片正在播放| 五月亭亭免费高清在线| 一本大道无码人妻精品专区| 波多野结衣69| 精品久久久久久无码中文字幕| 欧美成人国产精品高潮| 欧美大香线蕉线伊人图片| 中文字幕精品在线观看| 久久99国产精品久久99果冻传媒 | 天天天天天天天操| 夜恋全部国产精品视频| 国产精品白浆无码流出| 国产亚洲欧美在线| 人人妻人人添人人爽日韩欧美| 亚洲人jizz日本人| 三级三级三级网站网址| 51国产偷自视频区视频| 老头天天吃我奶躁我的视频| 玛雅视频网站在线观看免费| 欧美jizzhd精品欧美| 强行扒开双腿猛烈进入| 国产精品午夜爆乳美女| 四虎永久在线观看免费网站网址| 亚洲欧洲精品在线| 两个人一起差差差30分| 131的美女午夜爱爱爽爽视频| 老子影院午夜伦手机在线看| 欧美人与zxxxx与另类| 性初第一次电影在线观看| 国产我和子的与子乱视频| 浮力影院国产第一页| 一本大道无码人妻精品专区| 777精品成人影院| 男女下面一进一出免费无遮挡| 日韩男女做性高清在线观看| 天天拍天天干天天操| 国产免费a级片|