《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 解決方案 > 去噪、去水印、超分辨率,這款不用學習的神經網絡無所不能

去噪、去水印、超分辨率,這款不用學習的神經網絡無所不能

2019-01-29

不同的神經網絡可以實現給圖像去噪、去水印、消除馬賽克等等功能,但我們能否讓一個模型完成上述所有事?事實證明 AI 確實有這樣的能力。來自 Skoltech、Yandex 和牛津大學的學者們提出了一種可以滿足所有大膽想法的神經網絡。

微信圖片_20190129214720.jpg


事情是這樣的:研究人員們讓一個深度卷積網絡去學習復制被破壞的圖像(例如加入噪點的圖像),隨后竟發現這個網絡可以自行先學會如何重建圖像。該研究的論文《Deep Image Prior》已被收錄在 CVPR 2018 大會,而 GitHub 則已有 3800 個 star。


Deep Image Prior 的重要特點是,網絡由始至終僅使用了輸入的,被破壞過的圖像做為訓練,沒有經歷過大多數神經網絡所需要的學習過程即可完成任務。它沒有「看過」任何其它圖像,也沒有看過未受破壞的正常圖像,但最終恢復的效果依然很好。這說明自然圖像的局部規律和自相似性確實很強。


在 GitHub 項目中,作者如下展示了 5 種常見圖像重構的效果。他們表示單個卷積網絡可以完成缺失圖像的修復、痕跡的移除、圖像去噪、超分辨率和去除水印等,可以說該模型在理解圖像先驗信息下顯得無所不能。當然作者表示這個項目的超參數和架構都是可以調整的,它們遠沒有達到最優,所以感興趣的讀者快試試吧。

微信圖片_20190129214753.jpg


項目地址:https://github.com/DmitryUlyanov/deep-image-prior


其實上圖中的每一項任務都有很多研究,它們假設模型能從大型真實圖像數據集中學習到圖像的先驗信息,即像素怎樣才能組合成一張「正常」的圖像,這樣學習到通用圖像信息的模型就能用來修補圖像或生成高分辨率圖像了。但是這種觀點正確嗎?該項目的研究論文表示否定,它們只在損壞的「非正常」圖像上訓練同樣能學習到圖像的「先驗」,注意這種「訓練」僅表示模型在單張損壞圖像上反復迭代。

微信圖片_20190129214819.jpg

網友使用 AKB-48 照片進行超分辨率的嘗試。


與傳統觀點相反,該項目的研究論文表示未經任何「學習過程」的卷積圖像生成器架構可以捕捉到大量圖像數據,尤其是解決不同圖像修復問題的圖像數據。在卷積網絡對損壞圖像反復迭代時,它能自動利用圖像的全局統計信息重構丟失的部分。


研究者使用未經訓練的卷積網絡來解決幾種此類問題。研究者未在大量示例圖像數據上訓練卷積網絡,而是直接將生成器網絡應用于單個退化圖像,即有損壞的自然圖像。在此方法中,網絡權重作為修復圖像的參數。權重經過隨機初始化和擬合,以在提供特定退化圖像和任務相關模型時能夠最大化似然度。


本研究展示了,這個非常簡單的方法在標準圖像處理問題(如去噪、圖像修復和超分辨率)中極具競爭力。除了標準圖像修復任務外,該技術還可用于理解深度神經網絡激活函數中的信息。


論文:Deep Image Prior

微信圖片_20190129214834.jpg


論文地址:https://sites.skoltech.ru/app/data/uploads/sites/25/2018/04/deep_image_prior.pdf


摘要:深度卷積網絡已經成為圖像生成和修復的常用工具。通常,其優秀性能要歸功于從大量示例圖像中學習逼真圖像先驗的能力。而這篇論文反其道而行之,展示了一種生成器網絡架構,它可以在學習之前先捕捉大量低級圖像數據。本論文展示了隨機初始化神經網絡可在標準逆問題(如去噪、超分辨率和圖像修復)中作為手工先驗知識(handcrafted prior)使用,且性能優越。此外,同樣的先驗知識還可用于反轉深度神經表征以作出判斷,并基于 flash-no flash 輸入對來修復圖像。


該方法應用廣泛,且強調了標準生成器網絡架構捕捉的歸納偏置(inductive bias)。它還彌補了圖像修復兩大流行方法之間的距離:使用深度卷積網絡的基于學習的方法、基于手工圖像先驗知識(如自相似性)的無學習方法。


項目使用


該項目為不同的任務提供了對應的實現文檔,例如 inpainting.ipynb 展示了如何做圖像修復與去水印、super-resolution.ipynb 展示了如何做圖像超分辨率。如下展示了項目的環境配置與安裝,注意其主要使用了 PyTorch 0.4,所以已經更新到 1.0 的讀者可以借助 conda 或其它工具配置一個新環境。


安裝


在執行代碼之前,你需要安裝下列庫:


python = 3.6

pytorch = 0.4

numpy

scipy

matplotlib

scikit-image

jupyter


以上庫均可通過 conda (anaconda) 安裝,如:


conda install jupyter


Docker 鏡像


你也可以使用具備全部依賴項的 Docker 鏡像完成環境的配置,并連接到 Jupyter Notebook。你需要確保安裝了 docker 和 nvidia-docker,然后運行以下命令:


nvidia-docker build -t deep-image-prior .


然后,啟動容器,如下所示:


nvidia-docker run --rm -it --ipc=host -p 8888:8888 deep-image-prior


你會得到一個 URL,使用它可連接至 Jupyter notebook。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 国产婷婷一区二区三区| 成人在线免费视频| 亚洲美女视频免费| 足本玉蒲团在线观看| 国产超碰人人做人人爽av| 中文字幕人妻无码一夲道| 柠檬福利第一导航在线| 亚洲高清在线mv| 老公说我是不是欠g了| 国产欧美日韩另类va在线 | 国产精品一卡二卡三卡| √在线天堂中文最新版网| 日本理论片午午伦夜理片2021| 亚洲成a人片在线观看久| 精品一区二区三区av天堂| 国产亚洲欧美在在线人成| 两个人看的www高清免费观看| 天天综合亚洲色在线精品| 中文字幕永久免费| 日韩色视频在线观看| 亚洲欧洲尹人香蕉综合| 福利视频导航大全| 国产三级免费电影| 国产东北老头老太露脸| 国产麻豆精品原创| www.午夜视频| 新婚娇妻倩如帮助三老头| 五月天亚洲婷婷| 欧美成人看片一区二区三区 | 亚洲国产精品综合一区在线| 男人天堂网在线视频| 四虎永久在线精品免费观看地址 | 国产精品视频你懂的| selao久久国产精品| 手机看片国产免费永久| 久久电影网午夜鲁丝片免费| 欧美乱大交xxxx| 亚洲熟妇无码乱子av电影| 真实国产乱子伦在线观看| 啊公交车坐最后一排被c视频| 青春禁区视频在线观看8下载|