《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 一種新的聯合塊對角化卷積盲分離時域算法
一種新的聯合塊對角化卷積盲分離時域算法
來源:電子技術應用2012年第2期
溫媛媛, 陳 豪
中國空間技術研究院 西安分院, 陜西 西安710000
摘要: 提出一種基于高階累積量聯合塊對角化的時域算法求解卷積混合盲信號分離問題。引入白化處理,將混疊矩陣轉變成酉矩陣,混合信號轉變為互不相關的,進而計算出其對應的一系列高階累積量矩陣,通過最小化代價函數來實現高階累積量矩陣聯合塊對角化的目的,在時域中解決超定卷積盲分離問題。實驗表明,相比于經典的自然梯度算法,所提方法的分離精度更高,且運算速度也更快。
中圖分類號: TN912.3
文獻標識碼: A
文章編號: 0258-7998(2012)02-0101-04
A new joint block diagonalization time-domain algorithm for convolutive blind separation
Wen Yuanyuan, Chen Hao
Xi’an Division of China Academy of Space Technology, Xi’an 710000, China
Abstract: This paper proposes a new time-domain joint block diagonalization algorithm based on the high-order cumulant for the blind source separation of convolutive mixtures. This paper adopts the whitening procedure to transform the mixing matrix into an unitary matrix. Computing the high-order cumulant matrixes of the mixing signals whitened, which can be transformed into block diagonal matrixes through minimizing the cost function. Simulations results illustrate that, the new method outperforms the classic natural gradient method in separation precision and operation speed, and can be efficiently applied to the blind source separation of convolutive mixtures.
Key words : blind source separation; convolutive mixtures; high-order cumulant; joint block diagonalization

    近年,盲信號分離BSS(Blind Source Separation)的研究已經成為信號處理領域的一個研究熱點,涌現出許多盲分離的算法。盲信號分離是在源信號和傳輸信道參數未知的情況下,僅根據源信號的統計特性,從觀測信號中分離源信號的過程[1]。盲信號分離所研究的混疊模型主要分為瞬時混疊和卷積混疊兩類。瞬時盲分離已經得到廣泛而成熟的研究,聯合塊(JBD)對角化是解決瞬時盲分離的有效方法[2-4]。然而,傳感器接收到的信號通常是源信號與多徑傳輸信道的卷積混疊信號,這使得卷積盲分離受到越來越多的關注[5-7]。

    與瞬時混疊模型相比,卷積混疊信號模型及其求解更為復雜。在現有方法中,基于高階統計量的時域算法[8-9]是解卷積混疊盲信號分離問題的一類直觀且有效的方法。作為時域算法,它不需要解決頻域算法[10-11]中所固有的又不得不解決的尺度模糊和排列模糊問題;同時,對一組高階累積量矩陣同時進行JBD又可以有效地抑制高斯噪聲的影響。鑒于這兩點,本文提出一種基于高階累積量的JBD時域算法,來解決卷積混疊盲信號分離問題。
1 問題描述
    盲信號分離的目的是把通過一未知混合系統后的觀測信號分離開來。在卷積混合情況下,假設源信號通過一個線性有限脈沖響應FIR濾波器,也就是說觀測信號是由它們的延遲所組成的線性組合,即:
 



    用參考文獻[14]中所提到的自然梯度算法來分離卷積混合的源信號,最后分離出來的信號波形如圖3所示。
    從兩種算法分離出的信號波形圖中很難明顯看出其性能的差別,下面通過兩個性能指標來客觀地分析一

陣。在此基礎上通過使代價函數最小化的方法來使累積量矩陣成為塊對角矩陣,進而實現盲分離。計算機仿真結果表明,本文算法與自然梯度算法相比有分離精度高及分離速度快的特點。

參考文獻
[1] HAYKIN S. Unsupervised adaptive filtering, vol I: Blind  source separation[M]. New York: Wiley Press, 2000:21-23.
[2] SIDIROPOULOS N D, BRO R, GIANNAKIS G B. Parallel  factor analysis in sensor array processing[J]. IEEE Trans Signal Process, 2000,48(8):2377-2388.
[3] VANDER V A J. Joint diagonalization via subspace fitting  techniques[A].In Proc.ICASSP’01[C]. Piscataway,NJ:IEEE  Press, 2001:2773-2776.
[4] ARIE Y. Non-orthogonal joint diagonalization in the leastsquares sensewith application in blind source[J]. IEEE Trans Signal Process, 2002, 50(7):1545-1553.
[5] ABED-MERIAM K, BELOUCHRANI A. Algorithms for joint block diagonaliztion[A]. In Proc. EUSIPCO’04[C]. Vienna:EURASIP Press,2004:209-212.
[6] FEVOTTE C, THEIS F J. Orthonormal approximate joint block diagonalization[R].Technical Report GET/Télécom Pairs, 2007D007, 2007.
[7] 胡可,汪增福.一種基于時頻分析的語音卷積信號盲分離算法[J].電子學報,2006,34(7):1246-1254.
[8] BUCHNER H, AICHNER R, KELLERMANN W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J]. IEEE Transactions on Speech and Audio Processing, 2005,13(1):120-134.
[9] GHENNIOUI H, FADAILI E M, MOREAU N T, et al. A nonunitary joint block diagonalization algorithm for blind  separation of convolutive mixtures of sources[J]. IEEE Signal Processing Letters, 2007,14(11): 860-863.
[10] SAWADA H, MUKAI R, ARAKI S, et al. A robust and precise method for solving the permutation problem of frequency-domain blind source separation[J]. IEEE Transactions on Speech and Audio Processing, 2004,12(5): 530-538.
[11] HE Z S, XIE S L, DING S X, et al. Convolutive blind source separation in the frequency domain based on sparse  representation[J]. IEEE Transactions on Audio, Speech,  and Language Processing, 2007,15(5):1551-1563.
[12] GOROKHOV A, LOUBATON P. Subspace based techniques for second order blind separation of convolutive mixtures with temporally correlated sources [J]. IEEE Trans.Circuit Syst., 1997,44(9):813-820.
[13] BOUSBIAH-SALAH H, BELOUCHRANI A,ABED-MERAM  K. Jacobi-like algorithm for blind signal separation of convolutive mixtures[J]. Electron. Lett.,2001(37):1049-1050.
[14] AMARI S, DOUGLAS S, CICHOCKI A,et al. Multichannel blind deconvolution and equalization using the natural gradient[J]. In Proc. 1st IEEE Workshop Signal Processing Advanced Wireless Commun., Paris, France, 1997(4):101-104.

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 精品国产_亚洲人成在线| 国产精品一区二区香蕉| 天天躁日日躁狠狠躁av麻豆| 好男人www视频| 天堂网www在线资源| 国产香蕉97碰碰视频VA碰碰看| 国产精品亚洲专区无码不卡| 国产成人爱片免费观看视频| 国产亚洲美女精品久久久| 午夜老司机福利| 国产欧美一区二区久久| 国产三级免费电影| 伊人久久五月天| 国产午夜视频在线观看第四页| 四虎影视永久在线观看| 亚洲欧美日韩国产综合| 国产精品日本一区二区在线播放 | 男女同房猛烈无遮挡动态图| 青青青手机视频在线观看| 91精品在线看| 亚洲sss综合天堂久久久| 成人在线观看不卡| 色与欲影视天天看综合网| 污污内射在线观看一区二区少妇| 无码人妻精品一区二区三区久久久| 色窝窝亚洲AV网在线观看| 领导边摸边吃奶边做爽在线观看| 精品国产一区AV天美传媒| 欧美亚洲国产丝袜在线| 波多野结衣一二区| 成人做受120秒试看动态图| 国产精品亚洲二区在线观看| 国产一级毛片在线| 亚洲欧美第一页| 久久国产精品最新一区| freehd182d动漫| 黄色免费网站网址| 老师你的兔子好软水好多作文高清| 欧美jizz18| 天天躁日日躁狠狠躁人妻| 国产成人综合亚洲一区|