《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于模型識別技術的高溫微型壓力傳感器的應用
基于模型識別技術的高溫微型壓力傳感器的應用
摘要: 高溫壓力傳感器應用在很多領域,由于高溫將使放大電路工作失效,因而采用將放大電路與傳感器件分離的設計方案是解決高溫測量的方法之一。介紹一種將放大電路與傳感器件分離的基于模型識別技術的微型電容式壓力傳感器。
Abstract:
Key words :

  0  引 言

  壓力傳感器是使用最為廣泛的一種傳感器。傳統的壓力傳感器以機械結構型的器件為主,以彈性元件的形變指示壓力,但這種結構尺寸大、質量輕,不能提供電學輸出。隨著半導體技術的發展,半導體壓力傳感器也應運而生。其特點是體積小、質量輕、準確度高、溫度特性好。特別是隨著MEMS 技術的發展,半導體傳感器向著微型化發展,而且其功耗小、可靠性高。

  高溫壓力傳感器是為了解決在高溫環境下對各種氣體、液體的壓力進行測量。主要用于測量鍋爐、管道、高溫反應容器內的壓力、井下壓力和各種發動機腔體內的壓力、高溫油品液位與檢測、油井測壓等領域。目前,研究比較多的高溫壓力傳感器主要有SOS ,SOI ,SiO2 , Poly2Si 等半導體傳感器,還有濺射合金薄膜高溫壓力傳感器、高溫光纖壓力傳感器和高溫電容式壓力傳感器等。半導體電容式壓力傳感器相比壓阻式壓力傳感器其靈敏度高、溫度穩定性好、功耗小,且只對壓力敏感,對應力不敏感,因此,電容式壓力傳感器在許多領域得到廣泛應用。

  1  器件的基本組成及制作工藝

  硅電容式壓力傳感器的敏感元件是半導體薄膜,它可以由單晶硅、多晶硅等利用半導體工藝制作而成。典型的電容式傳感器由上下電極、絕緣體和襯底構成。當薄膜受壓力作用時,薄膜會發生一定的變形,因此,上下電極之間的距離發生一定的變化,從而使電容發生變化。但電容式壓力傳感器的電容與上下電極之間的距離的關系是非線性關系,因此,要用具有補償功能的測量電路對輸出電容進行非線性補償。由于高溫壓力傳感器工作在高溫環境下,補償電路會受到環境溫度的影響,從而產生較大的誤差。基于模型識別的高溫壓力傳感器,正是為了避免補償電路在高溫環境下工作產生較大誤差而設計的,其設計方案是把傳感器件與放大電路分離,通過模型識別來得到所測環境的壓力。高溫工作區溫度可達350 ℃。傳感器件由鉑電阻和電容式壓力傳感器構成。其MEMS 工藝如下:

  高溫壓力傳感器由硅膜片、襯底、下電極和絕緣層構成。其中下電極位于厚支撐的襯底上。電極上蒸鍍一層絕緣層。硅膜片則是利用各向異性腐蝕技術,在一片硅片上從正反面腐蝕形成的。上下電極的間隙由硅片的腐蝕深度決定。硅膜片和襯底利用鍵合技術鍵合在一起,形成具有一定穩定性的硅膜片電容壓力傳感器[2] 。由于鉑電阻耐高溫,且對溫度敏感,選用鉑電阻,既可以當普通電阻使用,又可以作為溫度傳感器用以探測被測環境的溫度。金屬鉑電阻和硅膜片的參數為:0 ℃時鉑電阻值為1 000Ω;電阻率為1. 052 631 6 ×10 - 5Ω·cm;密度為21 440 kg/ m3 ;比熱為132. 51 J/ (kg·K) 、熔斷溫度為1 769 ℃,故鉑電阻可加工為寬度為0. 02 mm;厚度為0. 2μm;總長度為3 800μm,制作成鋸齒狀,可在幅值為10 V 的階躍信號下正常工作。電容式壓力傳感器的上下電極的間隙為3μm、圓形平板電容上下電極的半徑為73μm、其電容值為50 pF。具體工藝流程圖如圖1所示。

 

  MEMS 工藝流程

 

  2  基于識別技術的模型及其仿真

 

  對于一個系統,其方程式為

  UO ( s) = G( s) Ui ( s) ,

  其中 UO ( s) 和Ui ( s) 分別為輸出和輸入信號,當輸出、輸入信號及系統的階數已知,可以通過計算機按一定的準則來識別G ( s) 的模型參數,為模型識別。本文主要闡述應用模型識別的方法來確定處于高溫環境下的電容式壓力傳感器的電容值。

  2. 1  電路模型

  基本電路是由一個金屬鉑電阻和一個電阻式高溫壓力傳感器構成(如圖2) 。

 

  基于模型識別的高溫壓力傳感器電路圖

 

  金屬鉑電阻對溫度變化敏感,若選用零度時電阻值為1 000Ω、溫度系數為3 851 ×10 - 6/ ℃的鉑電阻,其溫度變化范圍從- 50~350 ℃時,相應的電阻從803. 07~2 296. 73Ω。由電阻的變化可測得環境的溫度。壓力傳感器在不同壓力下有不同的電容值,因此,在同一溫度下,輸入同一交流電壓信號時,其輸出信號不同。

  2. 2  系統在時域范圍的算法

  圖2 電路所示的一階系統的傳遞函數為

  

  式中 UO 為輸出信號; Ui 為輸入信號; R 為電阻;C 為電容; t 為時間。

  利用MATLAB 繪制單位階躍響應曲線如圖3。

 

  系統單位階躍響應曲線

 

  從圖3 中可看出,該系統穩定、無振動。響應曲線的斜率為:

  對式(2) 進行變換得

  

  從式(3) 得,以lg[1 - UO ( t ) ]為縱坐標, t 為橫坐標,可得出通過原點直線,從直線的斜率可求得常數RC 的值,已知R 則可得出C ,從而得出壓力。

  2. 3  模型識別

  基于上述思想,若已知輸入、輸出信號, 可通過曲線擬合及線性回歸法得出RC。對式(3) 進行擬合,在擬合過程中, 加入一定的白噪聲。若R = 1000 Ω,電容C = 50 p F ,則擬合曲線如圖4 所示。

 

  系統階躍響應曲線擬合

 

  擬合參數最大時為5. 037 ×10 - 8 ,最大相對誤差為0. 78 %。當溫度變化時,金屬鉑電阻值發生變化,在不同的溫度下擬合的電容值和溫度的關系如表1 所示(加入1 %的白噪聲) 。

 

  不同溫度下擬合的電容值

 

  從表1 可見,擬合的電容誤差小于1 %。由此可見,在不同的時刻測得UO ( t) ,通過曲線擬合得出參數RC。再給電路加小信號直流電源,測出R 值,即求得C ,通過C 值則可知被測環境的壓力。圖5為350 ℃時,不同的壓力所對應的電容的理論值和實驗值,從實驗數據(表2) 可得,在測壓的過程中,利用模型識別的方法,誤差較小,其測壓誤差小于2 %。

 

  壓力、電容關系曲線

 

  壓力、電容實驗數據表

 

  3  結束語

 

  基于模型識別技術的高溫微型壓力傳感器電路簡單、工藝成本較低、體積小、可批量生產、準確度高。該傳感器避免了電阻式高溫壓力傳感器的自補償電路在高溫環境下工作時熱靈敏度漂移引起的誤差,也避免了其它電容式高溫壓力傳感器非線性補償電路在高溫環境下工作。該傳感器適合在各種高溫環境下測量氣體或液體的壓力。

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 免费的毛片网站| 羞羞漫画登录页面免费| 青青操在线免费观看| 美女大胸又爽又黄网站| 狼人香蕉香蕉在线视频播放| 欧美国产激情二区三区| 日本免费一级片| 天天夜碰日日摸日日澡| 国产白浆视频在线播放| 国产一级淫片视频免费看| 从镜子里看我怎么c你| 亚洲AV无码成人精品区狼人影院| 久久久久久综合| 99自拍视频在线观看| 91香蕉视频成人| 精品国产v无码大片在线观看| 欧美日韩国产精品| 无人视频免费观看免费直播在线观看| 在线观看视频国产| 国产寡妇树林野战在线播放| 八戒久久精品一区二区三区| 亚洲中文字幕久久无码| 丁香亚洲综合五月天婷婷| 44luba爱你啪| 美女bbbb精品视频| 欧美多人野外伦交| 成Av免费大片黄在线观看| 国产精品100页| 制服丝袜一区在线| 亚洲AV无码专区国产乱码DVD | 亚洲欧美乱综合图片区小说区| 久久精品国产9久久综合| h在线观看免费| 香蕉视频好色先生| 特级无码毛片免费视频尤物| 日本视频www色| 国产美女久久久久| 午夜性a一级毛片| 久久精品国产精品亚洲艾 | 久99久热只有精品国产女同 | 小小的日本三电影免费观看|