《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 探究變頻器的電磁兼容與電磁干擾抑制問題
探究變頻器的電磁兼容與電磁干擾抑制問題
摘要: 隨著國際標準的強制執行,再加上科研過程中不斷出現新的電磁干擾問題,使得變頻器的電磁兼容問題成為亟待解決的問題。本文從分析pwm變頻器傳導干擾機理入手,總結了目前傳導干擾的抑制措施,具有參考意義。總的來說,變頻器的電磁兼容設計還處于初期階段,還需要我們付出長期不懈的努力。相信在未來變頻器的電磁兼容設計將會有更好的發展。
Abstract:
Key words :

中心議題:

  • pwm變頻器的傳導干擾機理
  • pwm變頻器傳導干擾的抑制措施

解決方案:

  • 基于減小干擾源發射強度的emi抑制技術
  • 基于切斷傳導傳播途徑的emi抑制方法


1 引言

隨著現代控制理論、電力電子技術、計算機控制技術和傳感器技術的發展,整個拖動領域正在進行一場革命,交流電機的調速理論取得了突破性的進展,交流傳動取代直流傳動已成為不可逆轉的趨勢。變頻器以其節能顯著、過載能力強、調速精度高、響應速度快、保護功能完善、使用和維護方便等優點在交流傳動領域的應用將越來越廣泛。

變頻器是把工頻電源(50Hz或60Hz)變換成各種頻率的交流電源,以實現電機的變速運行的設備,其中控制電路完成對主電路的控制,整流電路將交流電變換成直流電,直流中間電路對整流電路的輸出進行平滑濾波,逆變電路將直流電再逆成交流電。對于如矢量控制變頻器這種需要大量運算的變頻器來說,有時還需要一個進行轉矩計算的CPU以及一些相應的電路。變頻調速是通過改變電機定子繞組供電的頻率來達到調速的目的。在現代工業中,變頻器的使用越來越廣泛。目前幾乎所有變頻器都采用pwm控制技術。

目前,國內外對電磁兼容問題非常重視。pwm變頻電機驅動系統所產生的電磁干擾也越來越受到人們的重視。為了達到電磁兼容標準的要求,正確的設計、合理的運用抑制手段,使系統emi發射強度減小到emc標準限值以下,使電氣設備和系統實現電磁兼容。

2 pwm變頻器的傳導干擾機理

所謂傳導耦合是指電磁噪聲的能量在電路中以電壓或電流的形式,通過金屬導線或其他元器件耦合至被騷擾設備。傳導耦合又可以分為直接傳導耦合和公共阻抗傳導耦合。直接傳導耦合是指噪聲直接通過導線、金屬體、電阻、電容、電感和變壓器等實際元器件耦合到被騷擾設備。公共阻抗傳導耦合是指噪聲通過印制板電路和機殼接地線、設備的公共安全接地線以及接地網絡中的共地阻抗產生公共的地阻抗耦合;噪聲通過交流供電電源及直流供電電源的公共電源阻抗時,產生公共電源阻抗耦合。

功率開關器件的開關運行狀態引起系統中各組件間復雜的相互耦合作用就會形成傳導干擾。傳導干擾考慮的最高頻率為30mhz,在真空中相應的電磁波波長λ為10m,因而對于尺寸小于λ/2π的電力電子裝置來講,屬于近場范圍,可用集總參數電路進行電磁干擾分析。可以根據傳導干擾傳播耦合通道的不同將系統輸入/輸出導線上的騷擾區分為共模干擾和差模干擾兩部分,一般認為共模干擾主要是由于系統變流器中的功率半導體開關器件開關動作引起的dv/dt經系統對地雜散電容耦合而傳播,一個極的電壓變化都會通過容性耦合到另一個極產生位移電流。通過寄生電容產生的電流并不需要直接的電氣連接,甚至可以沒有地。其大小可以表示為:i=cdu/dt ,式中c為電池干擾源和敏感設備之間的等效耦合電容。

 



差模干擾則主要是由于功率半導體開關器件開關引起的di/dt經輸入輸出線間的導體傳播。當然,這些只是傳導干擾產生的最本質原因,而不同的電機系統其傳導干擾的具體成因不同,另外,共模干擾和差干騷擾是可以相互轉化的,并不是絕對分開的。比如圖1所示為共模電流傳輸通道的不平衡造成非本質差模噪聲的電路圖。


圖1 非本質差模噪聲產生機理

如圖2為pwm變頻驅動電機系統的電磁干擾電流流通路徑圖,包括共模干擾和差模干擾。在pwm變頻器中,為保證開關管工作時不會因過熱而失效,都要對其安裝散熱器,并且為防止短路,開關管的金屬外殼與散熱器之間是通過導熱絕緣介質相隔離的,同時散熱器又是通過機箱接地的,于是,在變頻器與散熱器之間就形成了一個較大的寄生電容。當逆變器正常工作時,隨著每相橋臂上、下開關管的輪流開通,橋臂中點電位會隨之發生準階躍變化。如果從emi角度看該現象,那么三個橋臂所輸出的電壓就是三個emi干擾源,而且每個開關動作時都會對功率開關器件與散熱片之間寄生電容進行充、放電,形成共模emi電流。


圖2 pwm變頻驅動電機系統的電磁干擾電流流通路徑圖

3 pwm變頻器傳導干擾的抑制措施


由于電磁干擾產生必須具備三要素:電磁干擾源、電磁干擾傳播途徑和敏感設備,所以對于抑制pwm變頻驅動電機系統的傳導干擾也必須從三要素入手,即降低干擾源的強度、切斷傳播途徑和提高敏感設備的抗擾度。

3.1 基于減小干擾源發射強度的emi抑制技術
從降低干擾源的強度來看,歸納起來有三種具有代表性的方法:改變電路拓撲、改進控制策略和優化驅動電路。

(1)改變電路拓撲
改進電路拓撲的思路主要是通過對稱結構來消除變換器輸出的共模電壓,并且由于開關器件上電壓變化率減半而使得裝置輸入側傳導干擾發射水平降低。以a.l.julian為首的學者根據“電路平衡”原理提出了一種用于消除三相功率變換器輸出共模電壓的三相四橋臂方案[9-11],其實驗電路見圖3所示。該方法基本思想是采用一個外加“輔助相”使三相系統電路的對地電位對稱,并通過調整開關順序,使四橋臂輸出相電壓之和盡可能為零,實現共模電壓完全為零。與傳統三橋臂功率變換器相比,它的共模emi可以減小約50%。


圖3 帶二階濾波器的三相四橋臂功率變換器

m.d.manjrekar和a.rao等學者提出了一種通過添加輔助零狀態開關,以消除因零開關狀態而產生共模電壓的方案,電路結構見圖4所示。這種輔助零狀態合成器方法在經濟方面很有吸引力,并且還可以使消除感應電機側共模電壓。


圖4 輔助零狀態合成器結構圖

與傳統的功率變換相比,盡管三相四橋臂和輔助零狀態合成器這兩種方法都能夠消除或降低系統的共模電壓,但它們所采用的調制策略都會使系統電壓利用率下降。為此,haoran zhang等學者提出了一種用于消除電機共模電壓和軸電流的雙橋功率變換器,拓撲結構見圖5所示。它是通過控制雙橋功率變換器產生標準的三相雙繞組感應電動機平衡激勵,并通過平衡激勵(磁系統)實現抵消共模電壓,達到消除軸電壓、軸電流及充分減小漏電流、emi發射強度的目的。


圖5 雙功率變換器驅動電路

為了消除pwm電機驅動系統共模電流,a.consoli等學者基于共模電壓補償技術,提出了一種應用于由兩個或多個功率變換器組成的多驅動系統公共直流母線共模電流消除技術,拓撲結構見圖6所示。該方法是在兩個功率變換器做適當連接的基礎上,通過控制兩個變換器狀態序列而使共模電壓同步變化的新pwm調制策略。


圖6 公共直流母線多電動機驅動共模電壓抑制系統

(2)改進控制策略
由于兩電平pwm調制策略將不可避免的使功率變換器輸出含有共模電壓,為此一些學者基于改進逆變器控制方式或策略,提出了一些可以消除或減小共模電壓的新調制策略。韓國學者hyeoun-dong lee對全控型三相整流/逆變器的空間矢量調制方式進行了改動,它是依據非零矢量位置的移動會減小系統輸出共模電壓脈沖數量和作用時間這一原理,實現共模電壓的減小。另外該學者還提出了通過檢測整流器濾波電容鉗位中點電位的過零點極性,并選用兩個不同零矢量的方法。該方法可以將功率變換器輸出的共模電壓降低到傳統svpwm方式的三分之二;再有m.zigliotto等學者提出了以隨機開關頻率調制方式實現電磁干擾能量在頻域范圍內分布平均化的抑制技術。

(3)優化驅動電路
由于pwm電機驅動系統產生傳導emi的主要原因是功率半導體器件高頻開關動作所引起的dv/dt和di/dt過大,并且它們的大小還直接影響著系統emi的發射強度,而且對于常用的開關器件,其開關瞬間dv/dt和di/dt的大小受門極驅動脈沖波形和門極雜散電容的影響,因此,如果單純從減小系統emi發射強度的角度考慮,通過選擇適當的電路拓撲結構和控制策略是可以減小dv/dt和di/dt,實現降低系統emi發射強度。vinod john等學者根據igbt的結構特點、開關特性及其所具有的彌勒效應提出了一種三級驅動的思想,并設計出了相應的電路。它既能應用于分立器件,也能應用于igbt模塊,而且還適用于軟開關和硬開關技術;另外一種減小dv/dt和di/dt的方法就是增加緩沖吸收電路。該方法在一定程度上減小了dv/dt和di/dt,對系統emi具有改善作用,但事實上它只是消除了器件開關時的振蕩現象,效果不是很明顯。

3.2 基于切斷傳導傳播途徑的emi抑制方法
盡管單純從emc角度出發,降低干擾源對外發射電磁干擾強度是能夠減小系統emi,但會受到開關損耗增大、抑制幅度有限、控制策略繁雜及電壓利用率降低等不利因素的限制。為此各國學者相繼提出了一些用于阻斷emi傳播途徑的emi濾波器結構,并且實驗表明經過正確設計的濾波器,能夠使系統emi發射強度減小到emc標準限值以下,這是電氣設備和系統實現電磁兼容的重要手段。同諧波濾波器一樣,emi濾波器也可以被劃分為無源emi濾波器和有源emi濾波器兩種。

(1)有源emi濾波器
有源濾波器是通過有源電路來消除emi噪聲能量。有源濾波器的具體工作原理是通過檢測環節檢測到emi電流或電壓,然后將其反向回饋給系統,以此來抵消系統所產生的emi電流或電壓,達到消除emi的目的。

目前比較典型的用于消除共模電流的有源濾波器如圖7所示。它由小型共模電流變壓器和一對互補的高頻晶體管組成,逆變器開關動作時,高頻漏電流通過電機繞組和機座間的寄生電容經地線回到電源側,共模電流變壓器將共模電流isl 檢測出來,經互補晶體管放大產生補償電流il′,如果變壓器變比與晶體管放大倍數乘積足夠大,就可消除漏電流il,完全抑制了流入到電源側的共模電流isl。


圖7 用于消除共模電流的有源濾波器

傳統的用于消除共模電壓的有源濾波器如圖8所示,文獻將其稱為有源共模噪聲消除器,acc連接在逆變器的輸出端和三根電纜之間,由共模電壓傳感器、補償電路和共模變壓器組成,acc在逆變器輸出端疊加一個補償電壓,該補償電壓與pwm逆變器產生的共模電壓極性相反、幅值相等,從而使施加在負載上的共模電壓被完全消除,也就減小了共模電流和傳導emi。


圖8 用于消除共模電壓的有源濾波器

(2)無源emi濾波
無源emi濾波通常是由電阻、電感、電容等元器件組成,目前最為常見的是電源emi濾波器,其結構見圖9所示。由于它只能抑制emi噪聲,而對pwm電機驅動系統的其它負面效應無抑制作用,為此各國學者又相繼提出了一些兼顧其它功能的無源emi濾波器。如a.v.jouanne等學者所提出的共模變壓器方案,結構如圖10所示。該方案是從消除電動機側共模emi電流的角度進行設計的,它是在共模扼流圈的基礎上,再在同一磁芯上纏繞一個終端連接阻尼電阻的第四繞組,以此抑制共模emi電流的振蕩,達到消除電機端共模電壓帶來的其它負面效應。


圖9 典型三相emi電源濾波器

圖10 共模變壓器方案

d.a.rendusara等學者提出了改進型二階rlc低通功率變換器輸出濾波器,結構見圖11所示。它與原型濾波器相比,其重要區別就是通過導線把以星型形式連接的阻容電路中性點“n`”與變換器直流母線鉗位中點“m”接在一起。該濾波器的優點是可以同時減小電機側的傳導差模emi電流和傳導共模emi電流,并且如果參數設計合理,還可以使rf、lf和cf的值很小,而將其安裝在功率變換器機殼內。它可以使電機端的過電壓、對地共模emi電流以及軸電壓顯著減小,并且該濾波器的尺寸、損耗以及成本都較低。


圖11 改進型二階無源低通濾波器

4 結束語

隨著國際標準的強制執行,再加上科研過程中不斷出現新的電磁干擾問題,使得變頻器的電磁兼容問題成為亟待解決的問題。本文從分析pwm變頻器傳導干擾機理入手,總結了目前傳導干擾的抑制措施,具有參考意義。總的來說,變頻器的電磁兼容設計還處于初期階段,還需要我們付出長期不懈的努力。相信在未來變頻器的電磁兼容設計將會有更好的發展。

此內容為AET網站原創,未經授權禁止轉載。
欧美激情办公室aⅴ_国产欧美综合一区二区三区_欧美午夜精品久久久久免费视_福利视频欧美一区二区三区

          欧美激情第二页| 国模一区二区三区| 午夜久久tv| 国内精品福利| 亚洲色图自拍| 欧美精品aa| 一本色道久久综合亚洲精品婷婷| 中文有码久久| 欧美粗暴jizz性欧美20| 在线观看亚洲| 久久国产精品免费一区| 欧美日韩免费观看一区| 亚洲精品视频啊美女在线直播| 制服诱惑一区二区| 午夜精品影院| 亚洲欧美卡通另类91av| 黄色在线成人| 久久免费一区| 国产精品五区| 亚洲三级毛片| 欧美日韩成人| 久久动漫亚洲| 国产精品一区二区三区免费观看| 欧美日韩综合久久| 男女精品视频| 国产伦精品一区二区| 韩国在线一区| 欧美xxx在线观看| 国产毛片久久| 国产精品毛片在线看| 伊人久久大香线蕉综合热线 | 欧美成人国产| 香蕉成人久久| 国产日韩欧美三级| 在线一区免费观看| 99人久久精品视频最新地址| 黄色成人av网站| 欧美精品亚洲| 欧美日韩在线精品| 欧美日本亚洲| 欧美在线91| 久久九九国产| 欧美一级久久| 老司机午夜免费精品视频 | 国产精品最新自拍| 国产日韩欧美二区| 国产欧美一区二区三区另类精品| 亚洲乱亚洲高清| 99精品国产99久久久久久福利| 精品成人国产| 日韩一区二区久久| 国产精品色网| 久久只有精品| 韩日成人av| 在线不卡视频| 国产精品乱码一区二区三区| 亚洲欧美日韩精品在线| 乱人伦精品视频在线观看| 国产日韩欧美一区二区三区四区| 一区二区三区欧美在线| 国产乱人伦精品一区二区| 午夜亚洲视频| 欧美日韩亚洲一区三区| 伊人久久成人| 亚洲欧美精品在线观看| 欧美另类女人| 一本久道久久综合狠狠爱| 裸体一区二区| 亚洲黄色一区| 欧美va天堂在线| 亚洲精品一级| 欧美在线免费一级片| 亚洲视屏一区| 久久精品人人做人人爽电影蜜月| 欧美激情一区| 国产精品久久久久久模特| 欧美阿v一级看视频| 亚洲欧洲精品一区二区三区波多野1战4 | 中文一区在线| 国产精品啊v在线| 宅男噜噜噜66一区二区| 欧美成人在线免费观看| 一本色道久久综合亚洲精品不卡 | 日韩网站在线| 老司机午夜精品视频| 在线播放亚洲| 欧美日韩岛国| 蜜乳av另类精品一区二区| 亚洲国产精品一区制服丝袜| 欧美va天堂在线| 国产一级久久| 亚洲精品韩国| 国产精品豆花视频| 久久亚洲精品伦理| 亚洲一区激情| 99伊人成综合| 亚洲无线视频| 国产精品观看| 老司机午夜免费精品视频| 国产精品一区视频网站| 亚洲精品欧美| 亚洲日本精品国产第一区| 黄色工厂这里只有精品| 国产精品v欧美精品v日韩精品| 麻豆九一精品爱看视频在线观看免费| 亚洲欧洲日本mm| 欧美午夜精品| 国内成人在线| 亚洲特级毛片| 激情久久综合| 亚洲国内在线| 国产日韩综合| 国产精品伊人日日| 国产精品视频免费一区| 国产精品一卡| 六月天综合网| 久久婷婷国产综合尤物精品| 久久一区视频| 国产精品对白刺激久久久| 欧美视频久久| 悠悠资源网久久精品| 亚洲欧洲在线一区| 国产精品毛片在线| 先锋亚洲精品| 午夜精品网站| 精品91久久久久| 国产日韩欧美一区二区三区四区| 在线视频精品一区| 免费一区二区三区| 久热精品视频| 亚洲网站视频| 国产精品视频免费一区| 午夜综合激情| 午夜久久影院| 亚洲人成网站在线观看播放| 国产区二精品视| 久久福利毛片| 狠狠久久综合婷婷不卡| 一区二区精品国产| 久久先锋资源| 在线日韩电影| 久久久久久一区| 尤物在线精品| 久久视频一区| 亚洲日本欧美在线| 香蕉久久a毛片| 国产一区二区三区四区老人| 91久久国产自产拍夜夜嗨| 久久精品九九| 999亚洲国产精| 欧美福利精品| 亚洲综合国产激情另类一区| 欧美午夜免费| 亚洲综合另类| 亚洲九九精品| 韩日精品在线| 欧美a级片网站| 一本色道88久久加勒比精品| 欧美日韩国产三区| 亚洲欧美大片| 一区二区三区精品国产| 国内精品久久久久国产盗摄免费观看完整版| 99亚洲视频| 亚洲婷婷免费| 国模精品一区二区三区| 你懂的国产精品永久在线| av成人黄色| 亚洲高清在线| 极品日韩久久| 黑人一区二区| 欧美天天视频| 久热精品视频| 久久久久久久高潮| 先锋影音一区二区三区| 欧美日本韩国在线| 久久久久久一区| 国产乱人伦精品一区二区| 一区在线电影| 黄色成人精品网站| 国内在线观看一区二区三区| 久久婷婷一区| 久久久久久穴| 久久性天堂网| 久久一二三四| 欧美一区二区三区久久精品| 美女爽到呻吟久久久久| 美女国产一区| 久久中文在线| 欧美日韩在线高清| 很黄很黄激情成人| 亚洲午夜激情| 亚洲精品偷拍| 国产亚洲欧美另类一区二区三区| 99在线观看免费视频精品观看| 1024成人| 国产欧美日韩一区二区三区在线 | 男人的天堂成人在线| 亚洲欧美日韩综合国产aⅴ| 国产日韩欧美精品| 亚洲综合另类| 国产九区一区在线| 久久精品国产第一区二区三区最新章节 | 国产精品久久亚洲7777| 亚洲欧美日韩在线观看a三区| 亚洲女同同性videoxma| 久久国产精品久久w女人spa| 久久综合中文| 狠狠综合久久av一区二区老牛| 极品裸体白嫩激情啪啪国产精品| 亚洲黄色一区| 免费毛片一区二区三区久久久| 久久天堂精品| 一区二区在线不卡| 一本久道久久综合狠狠爱| 亚洲一区日韩| 亚洲视频狠狠| 久久av一区| 狠狠综合久久av一区二区老牛| 日韩亚洲不卡在线| 久久国产精品亚洲77777| 激情91久久| 亚洲精品欧美精品| 欧美一级专区| 亚洲性视频h| 亚洲欧美高清| 亚洲大片在线| 久久裸体视频| 国产日韩欧美三区| 国产精品啊v在线| 性久久久久久| 亚洲精品影视| 欧美午夜电影在线观看 | 欧美午夜一区| 国产精品一页| 亚洲成色精品| 欧美成人综合| 免费一级欧美片在线播放| 亚洲大胆av| 欧美精品一卡| 免费在线观看成人av| 亚洲精品在线免费| 国产精品国产三级欧美二区| 免费永久网站黄欧美| 亚洲欧洲一区| 好吊色欧美一区二区三区四区| 免费视频一区二区三区在线观看| 亚洲欧洲日本国产| 黄色欧美成人| 国产精品国码视频| 久久久国产精品一区二区三区| 亚洲成人自拍视频| 午夜亚洲激情| 亚洲少妇诱惑| 亚洲精品影院在线观看| 亚洲天堂激情| 狠狠爱综合网| 国产综合自拍| 国产一区二区在线观看免费播放| 久久伊人亚洲| 久久一区二区精品| 老**午夜毛片一区二区三区| 国产伦精品一区二区三区视频黑人 | 国内精品久久久久久久影视蜜臀 | 欧美成人免费在线| 男女av一区三区二区色多| 国产亚洲一级| 亚洲一区二区三区午夜| 国产日韩欧美一区二区| 国产精品入口| 亚洲一区一卡| 亚洲欧美久久久久一区二区三区| 亚洲一区高清| 久久久国产精品一区二区中文| 噜噜噜噜噜久久久久久91 | 国产精品hd| 国产欧美不卡| 中国成人在线视频| 国产精品久久久一区二区| 亚欧美中日韩视频| 欧美有码视频| 亚洲午夜精品久久久久久app| 亚洲小说欧美另类社区| 9久re热视频在线精品| 国产亚洲精品v| 久久一二三四| 亚洲成人自拍视频| 国产精品五区| 欧美精品18| 亚洲黄色天堂| 久久久精品五月天| 欧美日韩一区二区三区在线观看免| 国产在线日韩| 在线亚洲国产精品网站| 午夜亚洲一区| 国语精品一区| 亚洲一区二区在线看| 午夜精品婷婷| 国产亚洲午夜| 欧美日本国产| 国产精品毛片在线| 国产一区二区三区四区老人| 国产日本精品| 国产精品初高中精品久久 | 欧美在线播放| 亚洲精一区二区三区| 久久大逼视频| 好吊色欧美一区二区三区四区 | 欧美日韩成人| 国产模特精品视频久久久久| 欧美日韩三级电影在线| 国产欧美精品| 国内精品亚洲| 欧美一区二区三区在线免费观看| 99成人在线| 伊人久久综合| 欧美福利一区二区三区| 亚洲免费影视| 一本色道久久综合亚洲精品婷婷| 久久久久国产精品一区三寸| 激情久久久久久久| 久热综合在线亚洲精品| 一区二区黄色| 亚洲黄色免费| 国内精品久久久久久久果冻传媒| 久久动漫亚洲| 国产乱码精品一区二区三区不卡| 亚洲天堂成人| 欧美日韩第一区| 久久青草久久| 麻豆精品网站| 午夜一级在线看亚洲| 一区二区三区精品视频在线观看| 激情视频一区二区| 国内精品美女在线观看 | 亚洲高清资源综合久久精品| 欧美日韩亚洲一区三区| 欧美高清一区二区| 欧美福利专区| 欧美日韩专区| 国产一区二区三区四区hd| 欧美日韩理论| 韩国自拍一区| 亚洲高清自拍| 99亚洲视频| 国产精品久久久一区二区| 在线视频亚洲| 亚洲男人影院| 久久综合导航| 欧美午夜国产| 亚洲激情网站| 国产一级久久| 久久国产精品一区二区三区| 久久久久久亚洲精品不卡4k岛国| 性欧美长视频| 看欧美日韩国产| 国产伊人精品| 亚洲美女色禁图| 国产毛片久久| 欧美.日韩.国产.一区.二区| 欧美日韩网站| 国产视频不卡| 午夜日本精品| 一区二区三区欧美成人| 久久激情中文| 亚洲成色www久久网站| 国产午夜精品一区二区三区欧美| 性伦欧美刺激片在线观看| 你懂的国产精品| 亚洲国内在线| 久久另类ts人妖一区二区| 国内揄拍国内精品久久| 在线综合欧美| 欧美日韩国内| 亚洲免费综合| 亚洲一区一卡| 亚洲激情不卡| 欧美三级乱码| 国产视频在线观看一区 | 亚洲一区黄色| 国内外成人免费视频| 在线亚洲欧美| 国产精品对白刺激久久久| 国产欧美日本在线| 国产精品xvideos88| 香蕉国产精品偷在线观看不卡| 欧美日本一区二区视频在线观看| 亚洲精选91| 国产一区二区三区自拍| 国产精品永久入口久久久| 欧美日韩国产在线一区| 国产精品日韩欧美一区| 国产精品大片| 久久综合久久久| 国产日韩1区| 亚洲人成高清| 在线观看的日韩av| 国产精品二区三区四区| 久久精品综合一区| 亚洲综合社区| 国产欧美一区二区三区另类精品|