《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于數值特征與圖像特征融合的調制識別方法
基于數值特征與圖像特征融合的調制識別方法
2022年電子技術應用第11期
錢 磊1,2,吳 昊1,張 濤1,張 江1
1.國防科技大學第六十三研究所,江蘇 南京210007;2.國防科技大學 電子科學學院,湖南 長沙410073
摘要: 為解決低信噪比條件下相移鍵控和正交幅度調制類信號利用時頻圖像分類時識別率低的問題,提出一種信號特征融合的方法。首先對接收信號數據進行高階累積量計算,獲取一維數值特征向量;其次采用時頻分析方法預處理得到信號時頻圖,利用卷積神經網絡提取其一維圖像特征向量;將兩類特征向量級聯得到一維融合特征向量,基于融合后的特征向量經過全連接網絡進一步運算后得出分類識別結果。仿真結果顯示,在1 dB條件下,相比于單一圖像特征,采用特征融合的方法可將調制信號的識別準確率提高10%~30%。
中圖分類號: TN911.72
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222686
中文引用格式: 錢磊,吳昊,張濤,等. 基于數值特征與圖像特征融合的調制識別方法[J].電子技術應用,2022,48(11):89-93.
英文引用格式: Qian Lei,Wu Hao,Zhang Tao,et al. Modulation recognition method based on fusion of numerical features and image features[J]. Application of Electronic Technique,2022,48(11):89-93.
Modulation recognition method based on fusion of numerical features and image features
Qian Lei1,2,Wu Hao1,Zhang Tao1,Zhang Jiang1
1.The 63rd Research Institute of National University of Defense Technology,Nanjing 210007,China; 2.School of Electronic Science,National University of Defense Technology,Changsha 410073,China
Abstract: In order to solve the problem of low recognition rate of phase shift keying and quadrature amplitude modulation signals when using time-frequency image classification under the condition of low signal-to-noise ratio, this paper proposes a method of signal feature fusion. Firstly, the method calculates the high-order cumulant of the received signal and obtains the one-dimensional numerical eigenvector. Then, the time-frequency diagram of the received signal is obtained by time-frequency analysis, and the one-dimensional image feature vector is extracted by convolution neural network. The two kinds of feature vectors are connected to obtain one-dimensional fusion feature vector. Finally, the fused feature vector is input into the full connection layer and the classification results are output. The simulation results show that under the condition of about 1 dB, the recognition rate of phase shift keying and quadrature amplitude modulation signals can be improved by about 10%~30% compared with the method of single image feature.
Key words : modulation recognition;high-order cumulant;time-frequency analysis;feature fusion

0 引言

    在日趨復雜的電磁環境中,通常會接收到各種未知信號,該信號可能是己方的,也可能是敵方的,因此需要對信號的各種參數進行分析,以加強電磁頻譜管控,調制樣式就是其中一種關鍵參數。對非協作通信中接收信號的調制樣式的識別與確定是頻譜安全防護技術的重要一環,在電磁偵察、干擾信號識別、頻譜監測等場景中都有著廣泛的應用場景和巨大的發展潛力,在中低信噪比環境下進行增強調制識別率的理論及方法研究是一項很重要的課題。

    調制識別可以看作是一類模式識別問題,其原理就是通過提取樣本的特征進行分類識別,主要包含三大模塊,即預處理、特征提取和分類識別。常見的信號特征提取方法有:瞬時特征[1]、高階累積特征[2]、小波變換[3]時頻分析[4]等。決策樹[5]是常用的分類器,該方法易于理解但是泛化能力較差,于是產生了隨機森林(Random Forest,RF)[6]的方法,利用多棵決策樹對樣本進行訓練并預測的,有效地提高了泛化能力,但這兩類方法需人工確定節點,較為繁瑣。K最鄰近(K-Nearest Neighbors,K-NN)[7]算法使用距離度量將新示例與現有的示例比較,以最近的類標進行分類。以上傳統的方法結構簡單,易于理解,但是存在效率低下、惰性學習等局限性。目前更多地采用積極學習的算法,如支持向量機(Support Vector Machines,SVM)[8],把結構風險最小化原則應用于分類領域中,擅于處理小樣本和二分類問題;神經網絡(Neural Networks,NN)[9],是模擬人腦功能的一種數學模型,在多分類問題中表現更好。此外,相比于淺層結構算法,深度學習通過深層非線性網絡結構,提取數據的內在特征,在圖像識別和語音識別等方面取得了引人矚目的成績。調制識別和圖像識別及語音信號識別等方面存在很多關聯性和相似性,因此采用深度學習的方法來解決調制識別問題是一個切實可行的研究方向。




本文詳細內容請下載:http://m.xxav2194.com/resource/share/2000005011




作者信息:

錢  磊1,2,吳  昊1,張  濤1,張  江1

(1.國防科技大學第六十三研究所,江蘇 南京210007;2.國防科技大學 電子科學學院,湖南 長沙410073)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 女同学下面粉嫩又紧多水| 久久99精品久久久久久水蜜桃| 野花社区视频www| 国产高清一级毛片在线人| 中文字幕日韩高清版毛片| 欧美俄罗斯乱妇| 免费无码又爽又刺激毛片| 香蕉久久av一区二区三区| 国产草草影院ccyycom| 一级毛片看一个| 日韩人妻无码免费视频一区二区三区| 亚洲精品中文字幕无码av| 能播放18xxx18女同| 国产欧美日韩不卡在线播放在线| a视频免费在线观看| 无码任你躁久久久久久久| 亚洲av福利天堂一区二区三| 热re99久久精品国产99热| 四虎影视8848a四虎在线播放| 很污很黄的网站| 国产资源在线免费观看| www日本xxx| 无码专区一va亚洲v专区在线| 五月丁香六月综合av| 欧美综合自拍亚洲综合图| 免费在线观看h| 美女精品永久福利在线| 国产午夜小视频| 亚洲伦理中文字幕| 国内午夜免费鲁丝片| www.一级片| 成人动漫3d在线观看| 久久久精品电影| 最近中文字幕在线中文视频| 亚洲欧洲国产经精品香蕉网| 男人天堂手机在线版| 午夜在线观看视频免费成人| 色婷婷激婷婷深爱五月小蛇| 国产成人AV区一区二区三| 亚洲另类专区欧美制服| 国产超碰人人模人人爽人人喊|