《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于直接高階注意力和多尺度路由的圖神經(jīng)網(wǎng)絡(luò)
基于直接高階注意力和多尺度路由的圖神經(jīng)網(wǎng)絡(luò)
信息技術(shù)與網(wǎng)絡(luò)安全 6期
楊廣乾,李金龍
(中國科學(xué)技術(shù)大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,安徽 合肥230026)
摘要: 圖神經(jīng)網(wǎng)絡(luò)中的注意力機(jī)制在處理圖結(jié)構(gòu)化數(shù)據(jù)方面表現(xiàn)出優(yōu)異的性能。傳統(tǒng)的圖注意力計(jì)算直接連接的節(jié)點(diǎn)之間的注意力,并通過堆疊層數(shù)隱式獲取高階信息。盡管在圖注意力機(jī)制方面目前已有廣泛的研究,但用于注意力計(jì)算的堆疊范式在建模遠(yuǎn)程依賴方面效果較差。為了提高表達(dá)能力,設(shè)計(jì)了一種新穎的直接注意力機(jī)制,這一機(jī)制通過K階鄰接矩陣直接計(jì)算高階鄰居之間的注意力。通過自適應(yīng)路由聚合過程進(jìn)一步傳播高階信息,這使得聚合過程更靈活地適應(yīng)不同圖的特性。在引文網(wǎng)絡(luò)上的節(jié)點(diǎn)分類任務(wù)上進(jìn)行了大量的實(shí)驗(yàn)。實(shí)驗(yàn)表明,該方法優(yōu)于最先進(jìn)的基線模型。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2022.06.011
引用格式: 楊廣乾,李金龍. 基于直接高階注意力和多尺度路由的圖神經(jīng)網(wǎng)絡(luò)[J].信息技術(shù)與網(wǎng)絡(luò)安全,2022,41(6):64-72.
Direct high-order attention and multi-scale routing for graph neural networks
Yang Guangqian,Li Jinlong
(School of Computer Science and Technology,University of Science and Technology of China,Hefei 230026,China)
Abstract: Recently, the attention mechanism in Graph Neural Networks shows excellent performance in processing graph structured data. Traditional graph attention calculates the attention between directly connected nodes, and implicitly gets high-order information by stacking layers. Despite the extensive research about the graph attention mechanism, we argue that the stacking paradigm for attention calculation is less effective in modeling long-range dependency. To improve the expression ability, we design a novel direct attention mechanism, which directly calculates attention between higher-order neighbors via K-power adjacency matrix. We further propagate the higher-order information with an adaptive routing aggregation process, which makes the aggregation more flexible to adjust to the property of different graphs. We perform extensive experiments on node classifications on citation networks. Experiments shows that our method consistently outperforms the state-of-the-art baselines, which validates the effectiveness of our method.
Key words : graph neural networks;attention;dynamic routing

0 引言

圖結(jié)構(gòu)化數(shù)據(jù)廣泛存在于現(xiàn)實(shí)世界中,圖神經(jīng)網(wǎng)絡(luò)(GNN)已被證明可以有效地學(xué)習(xí)圖結(jié)構(gòu)化數(shù)據(jù)背后的知識(shí)[1-2]。圖神經(jīng)網(wǎng)絡(luò)基于傳播機(jī)制,通過聚合圖中節(jié)點(diǎn)的鄰居信息來學(xué)習(xí)潛在表示,可以用于下游任務(wù),例如節(jié)點(diǎn)分類[2-3]、圖分類[4-5]、連接預(yù)測(cè)等。

受自然語言處理和計(jì)算機(jī)視覺中注意力機(jī)制的啟發(fā),研究人員也開始探索圖結(jié)構(gòu)學(xué)習(xí)中的注意力機(jī)制。最廣泛使用的注意力機(jī)制是圖注意力網(wǎng)絡(luò),它已被證明具有出色的性能。圖注意力在消息傳遞過程中計(jì)算每對(duì)鄰居的注意力分?jǐn)?shù),以衡量節(jié)點(diǎn)的重要性,使得圖中的歸納學(xué)習(xí)成為可能。基于這項(xiàng)工作,后續(xù)工作[9-11]又進(jìn)行了許多對(duì)圖注意力的研究。





本文詳細(xì)內(nèi)容請(qǐng)下載http://m.xxav2194.com/resource/share/2000004537





作者信息:

楊廣乾,李金龍

(中國科學(xué)技術(shù)大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,安徽 合肥230026)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 夜夜揉揉日日人人视频| 最近中文字幕2018| 国产一级视频免费| 69无人区卡一卡二卡| 成人免费公开视频| 九一在线完整视频免费观看| 爱豆在线观看网址91|免费| 国产亚洲人成网站观看| 18禁美女黄网站色大片免费观看 | 韩国免费A级作爱片无码| 国内精品一区二区三区在线观看| 中文字幕一区日韩精品| 桃子视频在线观看高清免费视频 | 毛片网站免费在线观看| 向日葵app下载网址进入在线看免费网址大全 | 污视频免费网站| 双乳奶水被老汉吸呻吟视频 | 无遮挡辣妞范1000部免费观看| 亚洲免费人成在线视频观看| 男人插女人的网站| 四虎影视免费永久在线观看| 黄色aaa毛片| 国产精品天天看| 99爱在线视频这里只有精品 | 韩国理论福利片午夜| 国产黄大片在线观看| 一区二区三区无码视频免费福利| 日本猛少妇色xxxxx猛交| 亚洲人成无码网站久久99热国产 | 国产三级观看久久| 激情五月激情综合网| 国产超碰人人模人人爽人人添| www.狠狠操| 成人午夜高潮A∨猛片| 久久久噜噜噜www成人网| 李宗瑞60集k8经典网| 亚洲欧美一区二区三区在线 | 男人的j进女人视频| 啊灬用力啊灬啊灬快灬深| 青青热久久久久综合精品| 国产欧美日韩一区二区三区在线 |